Математическая энциклопедия - лобачевского пространство
Связанные словари
Лобачевского пространство
пространство, геометрия к-рого определяется аксиомами Лобачевского геометрии. В более широком смысле Л. п. понимается как неевклидово гиперболич. пространство, определение к-рого связано с понятиями геометрии псевдоевклидова пространства. Пусть nRn+1 псевдоевклидово (n+1) -пространство индекса n;на n-сфере этого пространства рассматривается множество пар диаметрально противоположных точек. Множество элементов, изометричное множеству пар указанных выше точек n-сферы пространства nRn+1, наз. n-пространством Лобачевского н обозначается 1Sn. Такое определение Л. п. позволяет вшпочить это пространство в проективную классификацию неевклидовых пространств. Пространство 1Sn в проективном пространстве Р п изображается внутренней областью овальной ( п-1)-квадрики, к-рая является пересечением n-сферы мнимого радиуса с бесконечно удаленной плоскостью пространства nRn+1, дополняющей это пространство до проективного пространства Pn+1. Точки овальной ( п-1)-квадрики являются бесконечно удаленными точками пространства 1Sn, т. е. квадрика является абсолютом этого пространства. Внешняя область квадрики, дополняющая пространство 1Sn до полного пространства Р n наз. идеальной областью пространства 1Sn. Указанная интерпретация наз. проективной интерпретацией К э л и Клейна. Она может быть получена также путем проектирования n-сферы мнимого радиуса пространства nRn+1 из ее центра на касательную n-плоскость, к-рая является евклидовым n-пространством; при этом пространство 1Sn изображается внутренней областью n-шара в этой n-плоскости, граница n-шара является абсолютом пространства 1Sn (иногда последнюю интерпретацию пространства 1Sn в евклидовом пространстве Rn наз. интерпретацией Бельтрами К л е й н а).
Проективная интерпретация 3-простран'ства Лобачевского позволяет проверить выполнение аксиом геометрии Лобачевского, дать изображение всех фигур этой геометрии и установить их свойства. В частности, в указанной интерпретации просто устанавливаются геометрич. свойства 2-плоскости Лобачевского, вытекающие из аксиом геометрии Лобачевского.
Присоединением к пространству lSn точек абсолюта и точек идеальной области определяется расширенное Л. п. m-плоскость, m<n, пересекающаяся с абсолютом, наз. собственной m-плоскостью; не пересекающая абсолюта идеальной m-плоскостыо; m-плоскость, касающаяся абсолюта, изотропной m-плоскостью. Таким же образом классифицируются прямые пространства 1Sn. Полюсы собственных плоскостей являются идеальными точками, а собственные точки полюсами идеальных плоскостей. Вообще, полярные (n- т-1)-плоскости собственных m-плоскостей Л. п. 1Sa суть идеальные (n-т-1)-плоскости, и полярные (n- т-1)-плоскости идеальных m-плоскостей собственные (n- т-1)-плоскости.
В пространстве 1Sn в качестве координат точки Xможно рассматривать координаты вектора жэтой точки в пространстве nRn+1, принадлежащей n-сфере мнимого радиуса. Координаты вектора x(Вейерштрасса координаты).при этом должны удовлетворять условию
Используются также координаты Бельтрами, .
причем В пространстве 1Sn вводятся декартовы координаты u1, u2, . . ., un, связанные с координатами х i соотношениями
где радиус кривизны пространства 1Sn. Расстояние между точками Xи Yопределяется соотношением
где х, у - определенные выше векторы точек Xи У, Е - линейный оператор, определяющий скалярное произведение в пространстве этих векторов.
Угол между двумя плоскостями Л. п. 1Sn совпадает с углом между re-плоскостями псевдоевклидова пространства nRn+1, соответствующим этим плоскостям. Угол j между плоскостями связан с расстоянием между полюсами этих плоскостей соотношением
когда угол j действительный, а чисто мнимое, и
когда угол j чисто мнимый, а расстояние действительное.
Расстояние между точками и величины углов между плоскостями допускают выражения через двойное отношение точек с помощью точек абсолюта.