Поиск в словарях
Искать во всех

Математическая энциклопедия - метрическая проекция

Метрическая проекция

оператор наилучшего приближения,многозначное отображение , ставящее в соответствие каждому элементу хметрич. пространства совокупность наилучшего приближения злементовпз множества Если Мчебышевское множество, то М. п.однозначное отображение. Задачу построения элемента наилучшего приближения часто решают приближенно, т. е. находят элемент из множества

где достаточно мало. По свойствам отображения иногда можно судить о множестве М. Так, если для любого элемента х нормированного пространства Xсуществует число такое, что выпукло (связно), то множество Мвыпукло (соответственно связно).

С точки зрения приложений полезно знать, обладает ли М. п. такими свойствами, как линейность, непрерывность, равномерная непрерывность и т. д. М. п. на чебышевское подпространство нормированного пространства X, вообще говоря, не линейна. Если М. п. на каждое подпространство фиксированной размерности является однозначной и линейной, то Xлинейно изометрично пространству с внутренним произведением. М. п. на непустое аппроксимативно компактное множество в метрич. пространстве полунепрерывна сверху, в частности, в нормированном пространстве М. п. на конечномерное чебышевское подпространство непрерывна; полунспрерывности снизу М. п. может не быть, если это подпространство не чебышевское. Существует рефлексивное строго выпуклое пространство и в нем бесконечномерное подпространство, М. п. на к-рое разрывна. Для М. п. на любое замкнутое выпуклое множество Мгильбертова пространства выполняется условие Липшица

с константой

Свойство непрерывности М. п . и ее обобщений находит применение в некорректных задачах, задаче о выпуклости чебышевских множеств, при построении элементов наилучшего приближения и т. д.

Лит.:[l]Singer I., The theory of best approximation and functional analysis, Phil., 1974; [2] Власов Л. П., "Успехи матем. наук", 1973, т. 28, в. 6, с. 3-66; [3] Бердышев В. И., в кн.: Теория приближения функций. Тр. Международной конференции по теории приближения функций. Калуга. 1975, М., 1977 с. 37 41.

В. И. Бердыгиев.

Математическая энциклопедия. — М.: Советская энциклопедия

И. М. Виноградов

1977—1985

Рейтинг статьи:
Комментарии:

Вопрос-ответ:

Что такое метрическая проекция
Значение слова метрическая проекция
Что означает метрическая проекция
Толкование слова метрическая проекция
Определение термина метрическая проекция
metricheskaya proekciya это
Ссылка для сайта или блога:
Ссылка для форума (bb-код):