Математическая энциклопедия - компакт
Связанные словари
Компакт
метризуемое бикомпактное пространство. Примеры К.: отрезок, окружность, n-мерные куб, шар, сфера, канторово множество, гильбертов кирпич;"-мерное евклидово пространство не является К., а подмножество такого пространства будет. К. тогда н только тогда, когда оно замкнуто и ограничено. Замкнутое подмножество К. есть К., и всякий К. гомеоморфен замкнутому подмножеству гильбертова кирпича (теорема Урысона). Для существования гомеоморфизма К. в евклидово пространство необходимо и достаточно, чтобы он был конечномерен (теорема Понтрягина Небелинга). Непрерывный образ К., являющийся T2 -пространством, есть К., и всякий К. есть непрерывный образ канторова множества (теорема Александрова). Произведение конечного или счетного множества К. есть К. Любой К. сепарабелен; среди всех бикомпактов. К. характеризуются тем, что обладают конечной или счетной базой. К. характеризуется также тем, что он вполне ограничен относительно какой-нибудь метрики, совместимой его топологией (теорема Xаус-дорфа).
К.один из важнейших классов топологич. пространств. Свойство метризуемого пространства быть К. равносильно каждому из следующих свойств.
1) Из любого счетного открытого покрытия пространства Xможно выделить конечное подпокрытие (аналог леммы Гейне Бореля Лебега о покрытии отрезка интервалами).
2) Любая счетная система таких замкнутых в Xнепустых множеств Fi, что i=l, 2, ..., имеет непустое пересечение (обобщение принципа вложенных отрезков Кантора).
3) Из любой последовательности точек пространства Xможно выделить сходящуюся в Xподпоследовательность (обобщенная теорема Больцано Вейерштрасса).
4) Любое бесконечное подмножество пространства Xимеет в Xхотя бы одну предельную точку (обобщенная теорема Больцано Вейерштрасса).
5) Любая непрерывная на Xфункция ограничена (обобщенная теорема Вейерштрасса).
6) Любая непрерывная на Xфункция принимает в нек-рой точке максимальное (минимальное) значение (обобщенная теорема Вейерштрасса).
7) Любая непрерывная на Xфункция равномерно непрерывна на Xотносительно какой-либо метрики, совместимой с топологией пространства X(обобщенная теорема Гейне Кантора).
Лит.:[1] Александров П. С, Введение в общую теорию множеств и функций, М.Л., 1948; [2] Колмогоров А, Н., Фомин С. В., Элементы теории функций и функционального анализа, 4 изд., М., 1976, гл. 2.
Б. А. Пасынков.
Математическая энциклопедия. — М.: Советская энциклопедия
И. М. Виноградов
1977—1985