Поиск в словарях
Искать во всех

Математическая энциклопедия - вейерштрасса условия

Вейерштрасса условия

экстремума необходимое и (отдельно) достаточное условия сильного экстремума в классическом вариационном исчислении. Предложены К. Вейерштрассом (К. Weierstrass, 1879).

Необходимое условие Вейерштрасса: для того чтобы функционал

достигал локального сильного минимума на экстремали , необходимо, чтобы для всех и всех выполнялось неравенство где Вейерштрасса -функция. Это условие может быть выражено через функцию

(см. Понтрягина принцип максимума). В. у. ( на экстремали ) эквивалентно тому, что функция

достигает максимума по при . Тем самым необходимое В. у. оказывается частным случаем принципа максимума Понтрягина.

Достаточное условие Вейерштрасса: для того чтобы функционал

достигал локального сильного минимума на вектор-функции достаточно, чтобы в окрестности G кривой нашлась вектор-функция наклона поля (геодезич. наклона) (см. Гильберта инвариантный интеграл), для к-рой

и

для всех и любого вектора .

Лит.:[1] Лаврентьев М. А., Люстерник Л. А., Курс вариационного исчисления, 2 изд., М.-Л., 1950; [2] Блисс Г. А., Лекции по вариационному исчислению, пер. с англ., М., 1950; [3] Понтрягин Л. С. [и др.], Математическая теория оптимальных процессов, 2 изд., М., 1969.

В. М. Тихомиров.

Математическая энциклопедия. — М.: Советская энциклопедия

И. М. Виноградов

1977—1985

Рейтинг статьи:
Комментарии:

Вопрос-ответ:

Что такое вейерштрасса условия
Значение слова вейерштрасса условия
Что означает вейерштрасса условия
Толкование слова вейерштрасса условия
Определение термина вейерштрасса условия
veyershtrassa usloviya это
Ссылка для сайта или блога:
Ссылка для форума (bb-код):