Математическая энциклопедия - алгебраическая топология
Связанные словари
Алгебраическая топология
область математики, возникшая для изучения таких свойств гео-метрич. фигур (в широком смысле любых объектов, где можно говорить о непрерывности) и их отображений друг в друга, к-рые не меняются при непрерывных деформациях (гомотопиях). В принципе, целью А. т. является полное перечисление таких свойств. Само назв. "А. т." происходит от определяющей роли алгебраич. понятий и методов в решении задач этой области. Наиболее фундаментальными классами объектов, свойства к-рых изучаются в А. т., являются: комплексы (многогранники, полиэдры) симплициальные, клеточные и др.; многообразия - замкнутые, открытые, с краем (границей), подразделяющиеся в свою очередь на гладкие (дифференцируемые), аналитические, комплексно аналитические, кусочно линейные и, наконец, чисто непрерывные (топологические); косые произведения ( расслоения).и их сечения. Основные типы отображений, рассматриваемые в А. т.,это произвольные непрерывные, кусочно линейные, гладкие отображения или их важнейшие подклассы: гомеоморфизмы, в частности непрерывные кусочно линейные или гладкие ( диффеоморфизмы);вложения одного объекта в другой, а также погружение (локальное вложение, иммерсия).
Важнейшим понятием А. т. является понятие деформации. Деформации подвергается отображение какого-то класса одного объекта в другой. Основными типами деформаций являются: гомотопия, или произвольная непрерывная (гладкая, кусочно линейная) деформация, непрерывного отображения; изотония (непрерывная, гладкая, кусочно линейная) деформация гомеоморфизма, вложения или погружения, где в процессе деформации в каждый момент времени отображение остается гомеоморфизмом, вложением или погружением.
Главные внутренние проблемы А. т. это проблема классификации многообразий относительно гомеоморфизмов (непрерывных, гладких, кусочно линейных), классификация вложений (или погружений) относительно изотонии (регулярных гомотопий), классификация общих непрерывных отображений относительно гомотопий. Важную промежуточную роль в решении этих задач играет проблема классификации комплексов пли многообразий относительно так наз. гомотопич. эквивалентности или гомотопического типа.
Большую роль в развитии А. т. играли следующие задачи, носящие несколько более частный характер.
1) Обычно проблему вложения понимают не в самой общей форме, а лишь для вложений в евклидово пространство. Особо важным частным случаем здесь является узлов теория (и зацеплений) в трехмерном пространстве, к-рая послужила одним из главных истоков А. т. К этому случаю примыкает также кос теория.
2).Заметную роль в истории А. т. играла теория го-мологич. инвариантов расположения различных множеств в евклидовом пространстве и законов двойственности (см. Двойственностъ в алгебраич. топологии), связывающих гомологии множества и дополнения к нему.
3) Ряд фундаментальных результатов был получен о вычислении алгебраич. числа неподвижных точек отображения многообразия в себя; особенно много глубоких фактов было здесь открыто для неподвижных точек компактных гладких групп преобразований даже циклич. групп конечного порядка.
4) Большую технич. роль в развитии А. т. сыграли методы, развитые для решения так наз. задачи о ко-бордизме: найдется ли многообразие с краем (кобордизм), границей к-рого служит заданное замкнутое многообразие. Вопросы такого рода возникли впервые в связи с вычислением гомотопических групп сфер. Важны случаи, когда задача о кобордизме решается до конца на языке характеристических классов.
5) Накоплено много фактов о гомологич. инвариантах особенностей векторных, реперных, тензорных полей и особенностей гладких отображений многообразий друг в друга и, в частности, в евклидово пространство. Решение этой задачи приводит, в частности, к ха-рактернстич. классам. Особо важным случаем являются стационарные точки гладких функций на многообразиях или различных функционалов иа пространствах путей (экстремалей) их связь с гомологии теорией играет большую роль в выяснении геометрич. строения многообразий, оценке снизу числа экстремалей.
6) Исследование алгебро-топологич. свойств важнейших специальных пространств Ли групп - тесно связано с их алгебраич. структурой, их представлениями, вариационным исчислением на группах Ли. Результаты о топологич. строении групп Ли лежат в основе многих методов и фактов А. т., относящихся к любым многообразиям. К группам Ли по методам примыкает А. т. однородных многообразий.
7) Особую роль в А. т. играют специальные инварианты, связанные с различными алгебраич. структурами над фундаментальной группой. Простейшие инварианты такого типа появились в теории узлов и трехмерных многообразий; в дальнейшем их алгебраич. теория существенно развилась и выделилась в алгебраич. дисциплину стабильную алгебру, или алгебраическую К-теорию.
8) Анализ геометрич. строения громадного числа примеров простейших наиболее часто встречающихся типов многообразий (напр., групп Ли, однородных пространств, многообразий линейных элементов, многообразий с дискретными группами движений), а также фундаментальные основы римановой геометрии приводят к понятию косого произведения (расслоения), составленного из сомножителей базы и слоя, всего пространства произведения вместе с проекцией на базу, структурной группы преобразований слоя. В связи с этим к числу центральных проблем А. т. относятся также проблема классификации косых произведений и проблема классификации их сечений относительно гомотопии. Особо важными являются главные расслоения и векторные расслоения.
Метод, с помощью к-рого решаются все основные вопросы А. т., состоит в построении алгебраич. инвариантов, эффективно вычислимых в конкретных примерах и принимающих какую-то дискретную совокупность значений; значение инварианта не должно меняться при деформациях в соответствующем классе отображений, для изучения к-рого этот инвариант построен. Большое количество необходимых инвариантов, богатство алгебраич. связей между ними и трудность их вычисления определили, в конечном счете, современное лицо А. т.
Вычисление алгебро-топологич. инвариантов простейших часто встречающихся многообразий не всегда является легким делом. Напр., вычисление гомологич. инвариантов групп Ли и многих однородных пространств потребовало больших усилий и использования сложных методов. Еще труднее вычислять гомотопич. группы. Ряд наиболее важных гомотопич. групп для групп Ли был неожиданным образом вычислен с помощью вариационной теории геодезических; знание таблицы этих гомотопич. групп для групп Ли позволило классифицировать векторные расслоения.
Большинство алгебро-топологич. инвариантов представляет собой так наз. функтор на категории топологич. пространств изучаемого типа. Это означает, грубо говоря, что значения инварианта естественно преобразуются при отображениях пространств друг в друга: напр., фундаментальные группы любых пространств или их группы (кольца) гомологии (когомологий) испытывают гомоморфизмы при непрерывных отображениях; характеристич. классы (отмеченные элементы в гомологиях) переходят друг в друга при гомеоморфизмах многообразий; результат применения когомологич. операции к элементу гомологии (когомологий) переходит, после непрерывного отображения пространства, в результат применения этой операции к образу этого элемента и т. д.
Одно из главных свойств, лежащее в основе изучения и применений почти всех алгебро-топологпч. инвариантов, заключается в том, что их эффективное построение, как правило, связано с существенно дополнительной геометрич. структурой: построение всех основных инвариантов гомеоморфизма для комплексов требует разбиения на симплексы или клетки, в то время как результат построения должен быть инвариантен относительно всех непрерывных гомеоморфизмов и даже гомотопич. эквивалентностей напр., фундаментальная группа, эйлерова характеристика, гомологии группа (группа Бетти), когомологий кольцо, когомологические операции,. Точно так же построение всех основных инвариантов гомеоморфизма для гладких многообразий требует либо их предварительной триангуляции и тем самым сведения к комплексам, либо существенного использования средств анализа; напр., построение кольца когомологий через дифференциальные формы (кососимметрич. тензоры) и дифференциальные операции над ними, либо построение характеристич. классов через особенности векторных, репер-ных или тензорных полей. Более того, иногда необходимо использовать средства римановой геометрии напр., существенную роль играет определение характеристич. классов многообразия пли косого произведения через риманову кривизну, хотя результат инвариантен относительно всех непрерывных гомеоморфизмов. В связи с этим в истории топологии появление основных эффективно вычислимых инвариантов было связано с трудным вопросом о том, как доказать инвариантность этой величины. Это еще один тип проблем, существовавших в А. т. Напр., рациональные характеристич. классы (или интегралы от классов по циклам) оказались топологически инвариантными, а гомотопически неинвариантными. Полные целочисленные характерпстич. классы оказались неинвариантными относительно непрерывных и даже кусочно линейных гомеоморфизмов.