Математическая энциклопедия - характеристика
Связанные словари
Характеристика
одно из основных понятий в теории дифференциальных уравнений с частными производными. Роль X. проявляется в существенных свойствах этих уравнений, таких, как локальные свойства решений, разрешимость различных задач, их корректность и др.
Пусть
линейный дифференциальный оператор с частными производными порядка m, a
его символ. Здесь -мультииндекс, | v |=v1+ .. .+vn,
Пусть S -гиперповерхность, определенная в уравнением причем при
В этом случае Sназ. характеристической поверхностью, или характеристикой, для оператора L( х, D). Другие названия X.: характеристическое многообразие, характеристическая линия (в случае
Ниже рассмотрен пример задачи Коши. Пусть S - произвольная (не обязательно характеристическая) гиперповерхность в определенная уравнениями
Пусть u0, ..., um-1 -функции, определенные на Sв окрестности Uточки и поставлена задача Коши
относительно неизвестной функции и. Здесь f-заданная функция, L(x, D) - заданный линейный дифференциальный оператор порядка т, п - ортонормированный вектор к S. Считая, для определенности, заменой переменных
приходят к уравнению
Невыписанное выражение под знаком не содержит частных производных от функции ипо порядка т. Возникают два случая:
В первом случае деление уравнения (2) на приводит к уравнению, разрешенному относительно старшей частной производной по переменной т. е. записанному в нормальной форме. Начальным условиям можно придать вид
Такая постановка задачи Коши хорошо изучена и, напр. при аналитически заданных функциях в уравнении и в начальных условиях, существует единственное решение этой задачи в классе аналитич. ций в достаточно малой окрестности точки х 0. Во втором случае точка х 0 является характеристической, а если равенство (1) верно для всех то поверхность Sявляется X. В этом случае начальные данные не могут быть произвольными и исследование задачи Коши усложняется.
Напр., для уравнения
могут быть заданы начальные условия на одной из его X. x1=0:
Если функция u1 отлична от постоянной, то задача Коши (3), (4) не имеет решения в пространстве С 2. Если же функция u1 постоянна, напр. равна то решение неединственно в С 2, т. к. им может быть любая функция вида
u(x1, х2) = ах1 + b (х 1) + и0 (х 2). где
Таким образом, задача Коши существенно различается в зависимости от того, заданы ли начальные данные на характеристической поверхности или нет.
X. обладает свойством инвариантности при преобразовании независимых переменных: если есть решение уравнения (1) и если преобразование переводит удовлетворяет уравнению
где
Другое свойство X. таково, что относительно X. Sоператор L(x, D )является внутренним дифференциальным оператором.
Эллиптические линейные дифференциальные операторы определяются как операторы, для к-рых не существует X. (действительных). Определение гиперболич. и параболич. операторов также тесно связано с понятием X. Так, линейный дифференциальный оператор 2-го порядка относится к гиперболич. типу, если он имеет два семейства X., и к параболическому, если одно. Знание X. дифференциального уравнения позволяет свести это уравнение к более простому виду. Напр., пусть задано гиперболич. уравнение
Для него уравнение X. (1) имеет вид
Последнее уравнение определяет два различных семейства X.:
Существуют две X. из этих семейств такие, что соответствующие им функции и определяют замену переменных по формулам
и приводят уравнение (5) к канонич. виду
Для нелинейного дифференциального уравнения
где -мультииндексы, причем X. Sопределяется как гиперповерхность в с уравнением причем при и Символ в атом случае для оператора (6), задаваемого функцией F( х, и, v, w), определяется так:
Кроме переменных хи очевидно,может зависеть от Пусть, напр., задано уравнение 1-го порядка (m = 1). Кроме того, для простоты п=2. Уравнение (6) принимает вид
с функцией F(x, у, z, p, q). Уравнение X.:
Т. к. решение этого уравнения фактически может зависеть от и, то ее задают в параметрич. виде
причем эти функции удовлетворяют обыкновенным дифференциальным уравнениям
x'(t) = Fp, y'(t) = Fq, z'(t) = pFp + qFq, P'(t)=-Fx-pFz, g'(t)=-Fy-qFz.
Геометрически это определяет т. н. характеристическую полосу (при Проекция этой полосы на пространство (x(t), y(t), z(t))определяет такую кривую линию в что в каждой своей точке она касается плоскости с направляющими коэффициентами p(t), q(t). Эта кривая также наз. X. уравнения (6).
Лит.:[1] Мизохата С., Теория уравнений с частными производными, пер. с япон., М., 1977: [2] Камке Э., Справочник по дифференциальным уравнениям в частных производных первого порядка, пер. с нем., М., 1966; [3] Хартман Ф., Обыкновенные дифференциальные уравнении, пер. с англ., М., 1970; [4] Петровский И. Г., Лекции об уравнениях с частными производными, 3 изд., М., 1961; [5] К ошляков Н. С., Глинер Э. Б., Смирнов М. М., Уравнения в частных производных математической физики, М., 1970: [6] Владимиров В. С., Уравнения математической физики, 4 изд., М., 1981; [7] Михлин С. Г., Курс математической физики, М., 1968; [8] Тихонов А. Н., Самарский А. А., Уравнения математической физики, 5 изд., М., 1977.
Ю. В. Комленко.
Математическая энциклопедия. — М.: Советская энциклопедия
И. М. Виноградов
1977—1985