Поиск в словарях
Искать во всех

Математическая энциклопедия - аналитическая модель языка

Аналитическая модель языка

анализирующая модель языка,один из типов математич. конструкций, используемых в математической лингвистике для описания строения естественных языков. Эти конструкции служат для формального моделирования основных категорий лингвистики, а также самого процесса лингвистич. исследования, иначе говоря для получения по нек-рым совокупностям "неупорядоченных" данных о языке (точнее, о речи) тех или иных сведений о строении механизма языка, т. е. о его грамматике в широком смысле слова. "Работа" такой модели не всегда носит характер эффективного построения, поскольку совокупность исходных данных может не быть конструктивным объектом; в принципе это не уменьшает значения таких моделей.

В наиболее полно разработанных А. м. я. в качестве совокупности исходных данных выступает объект, моделирующий множество грамматически правильных предложений естественного языка, а именно нек-рый формальный язык в заданном алфавите (словаре) .

Если язык в словаре и то говорят, что цепочка замещаема на цепочку уотносительно если каждая из двух цепочек и узамещаема на другую относительно то говорят, что хи у взаимозамещаемы относительно Понятие взаимозамещаемости имеет простой лингвистич. смысл: если понимается как множество грамматически правильных предложений нек-рого естественного языка, то взаимозамещаемые цепочки представляют собой "синтаксически эквивалентные", т.

е. выполняющие одни и те же синтаксич. функции, словосочетания. В частности, если односимвольная цепочка а(в лингвистич. интерпретации слово) взаимозамещаема с цепочкой хдлины то хявляется "потенциальной составляющей", т. е. может входить в лингвистически естественные системы составляющих грамматически правильных предложений данного языка (см.

Синтаксическая структура);в этом случае цепочку хназ. конфигурацией 1-го ранга языка Lс результирующим а. Так, для русского языка цепочку "равномерно непрерывная" можно считать конфигурацией 1-го ранга с результирующим "непрерывная". Однако конфигурациями 1-го ранга не исчерпываются все "потенциальные составляющие": напр.

, словосочетание "непрерывная функция" не является конфигурацией 1-го ранга, т. к. на него замещаемы только такие слова, как "функция", "производная", ..., но само оно ни на одно из этих слов не замещаемо ("f(x) есть равномерно непрерывная функция" правильное предложение, а f(x) есть равномерно функция" нет). Поэтому вводится следующее определение: если есть натуральное число и для каждого определено понятие конфигурации языка ранга то цепочка длины наз. конфигурацией ранга r языка Lс результирующим а, где если: а замещаема на хотносительно если не содержит вхождений конфигураций рангов, меньших г, перекрывающихся с выделенным вхождением х, но не содержащихся в нем целиком, то В русском языке словосочетание "непрерывная функция" можно считать конфигурацией 2-го ранга с результирующим "функция" (а также, напр., "производная"). Можно показать, что в нек-ром смысле язык вполне определяется совокупностью своих конфигураций.

.
Рейтинг статьи:
Комментарии:

Вопрос-ответ:

Что такое аналитическая модель языка
Значение слова аналитическая модель языка
Что означает аналитическая модель языка
Толкование слова аналитическая модель языка
Определение термина аналитическая модель языка
analiticheskaya model yazyka это
Ссылка для сайта или блога:
Ссылка для форума (bb-код):