Математическая энциклопедия - аналитическая функция
Связанные словари
Аналитическая функция
функция, к-рая может быть представлена степенным рядом. Исключит, важность класса А. ф. определяется следующим. Во-первых, этот класс достаточно ш и р о к: он охватывает большинство функций, встречающихся в основных вопросах математики и ее приложений к естествознанию и технике. Во-вторых, класс А. ф. з амкнут относительно основных операций арифметики, алгебры и анализа. Наконец, А. ф. обладают важным свойством единственности: каждая А. ф. образует одно "органически связанное целое", представляет собой "единую" функцию во всей своей естественной области существования. Это свойство, к-рое в 18 в. считалось неотделимым от самого понятия функции, приобрело принципиальное значение после установления в 1-й пол. 19 в.общей точки зрения на функцию как на произвольное соответствие. Теория А. ф. была создана в 19 в. в первую очередь благодаря работам О. Коши (A. Cauchy), Б. Римана (В. Riemann) и К. Вейерштрасса (К. Weierstrass). Решающее значение в построении этой теории сыграл "выход в комплексную область". Теория А. ф. возникла как теория функций комплексного переменного; и в настоящее время (70-е гг. 20 в.) теория А. ф. составляет основное содержание общей теории функций комплексного переменного.
Существуют различные подходы к понятию аналитичности. В основе одного из них, впервые развитого О. Коши и далеко продвинутого Б. Риманом, лежит структурное свойство функции существование производной по комплексному неременному, или комплексная дифференцируемость. Этот подход тесно связан с геометрическими представлениями. Другой подход, систематич. развивавшийся К. Вейерштрассом, основывается на возможности представления функций степенными рядами; он связан, тем самым, с аналитическим аппаратом, к-рым может быть изображена функция. Основной факт теории А. ф. заключается в тождественности соответствующих классов функций, рассматриваемых в произвольной области комплексной плоскости.
Перейдем к точным определениям. Пусть область в комплексной плоскости . Если каждой точке поставлено в соответствие нек-рое комплексное число , то говорят, что в области определена (однозначная) функция f комплексного переменного , и пишут: Функция может рассматриваться как комплексная функция двух действительных переменных хи у, определенная в области ( евклидова плоскость). Задание такой функции равносильно заданию двух действительных функций
Зафиксировав точку , придадим приращение (так, что ) и рассмотрим соответствующее приращение функции :
Если
при или, что то же, если существует
то функция наз. дифференцируемой (в смысле комплексного анализа, или в смысле ) в точке ; производная функция в точке , а ее дифференциал в этой точке. Функция , дифференцируемая в каждой точке области D, наз. дифференцируемой в области D.
Сравним понятия дифференцируемости функции как функции двух действительных переменных (в смысле ) н в смысле . В первом случае дифференциал имеет вид
где
частные производные функции . Переходя от независимых переменных к переменным к-рые формально можно считать новыми независимыми переменными, связанными со старыми соотношениями (становясь на эту точку зрения, функцию иногда записывают в виде ), и, выражая по обычным правилам вычисления
дифференциалов, получают запись в комплексной форме:
где
(формальные) производные функции по и соответственно. Отсюда видно, что дифференцируемость функции в смысле С имеет место в том и только том случае, когда она дифференцируема в смысле и справедливо равенство , к-рое в развернутой форме можно переписать так:
Если функция f дифференцируема в смысле в области D, то последние соотношения справедливы в каждой точке этой области; они наз. уравнениями КошиРимана. Эти уравнения встречались уже в 18 в. в связи с изучением функций комплексного переменного в трудах Ж. Л. Д'Аламбера и Л. Эйлера (J. L. D'Alembert, L. Euler). Определение, данное в начале, уточняется так. Функция f, определенная в области D, наз. голоморфной (аналитической) вточке , если существует окрестность этой точки, в к-рой функция f представляется степенным рядом
Если это свойство имеет место в каждой точке области , то функция наз. голоморфной (аналитической) в области .
Функция , голоморфная в точке , дифференцируема в этой точке. Более того, сумма сходящегося степенного ряда имеет производные всех порядков (бесконечно дифференцируема)
по комплексному переменному ; коэффициенты ряда могут быть выражены через производные функции в точке по формулам
. Степенной ряд, записанный в форме
наз. рядом Тейлора функции в точке . Тем самым, голоморфность функции в области означает, что в каждой точке области функция бесконечно дифференцируема и ее ряд Тейлора сходится к ней в нек-рой окрестности этой точки.
С другой стороны, в теории А. ф. устанавливается следующий замечательный факт: функция , дифференцируемая в области , голоморфна в этой области (в отдельной точке это утверждение неверно: дифференцируема в точке , но нигде не голоморфна). Следовательно, понятия комплексной диф-ференцируемости и голоморфности функции в области тождественны; каждое из следующих свойств функции в области дпфференцируемость в смысле , дифференцируемость в смысле вместе с вы. полнением уравнений Коши Рпмана, голоморфность может служить определением аналитичности f в этой области.
Еще одна характеристика А. ф. связана с понятием интеграла. Интеграл от функции вдоль (ориентированной спрямляемой)кривой Г: может быть определен формулой:
или при помощи криволинейного интеграла:
Центральное место в теории А. ф. занимает следующая интегральная теорема Коши: если А. ф. в области D, то для любой замкнутой кривой , ограничивающей область, принадлежащую D. Верио и обратное заключение (теорема Морер ы): если f непрерывна в области D и для любой такой кривой Г, то А. ф. в области D. В частности, в односвязной области аналитическими являются те п только те непрерывные функции f, для к-рых интеграл по любой замкнутой кривой равен нулю (или, что то же самое, интеграл по любой кривой Г, соединяющей произвольные точки зависит только от точек и не зависит от формы этой кривой). Эта характеристика А. ф. лежит в основе многих их приложений. Интегральная теорема Коши позволяет получить интегральную фор мулу Коши, выражающую значения А. ф. внутри области через ее значения на границе этой области:
здесь D - область, граница к-рой состоит из конечного числа непересекающихся спрямляемых кривых (ориентация предполагается положительной относительно области D), f - функция, аналитическая в нек-рой области . Эта формула позволяет, в частности, свести изучение многих вопросов, связанных с А. ф., к соответствующим вопросам для простейшей функции ядра Коши (Подробнее см. статью Интегральные представления аналитических функций.)
Важнейшее свойство А. ф. выражается следующей теоремой единственности: две функции, аналитические в области Dи совпадающие на к.-л. множестве, имеющем предельную точку в D, совпадают и во всей области D(тождественны). В частности, А. ф. отличная от тождественного нуля, может иметь в области Dлишь изолированные нули. Если при этом нуль функции , то в некоторой окрестности точки имеем где натуральное число (называемое кратностью нуля функции ), а А. ф. в , отличная от нуля.
Важную роль в изучении А. ф. играют точки, в к-рых нарушается свойство аналитичности так наз. особые точки А. ф. Рассмотрим здесь изолированные особые точки (однозначных) А. ф. (подробнее см. Особая точка аналитической функции). Если f А. ф. в кольце вида то она разлагается в этой области вряд Лорана
содержащий, вообще говоря, не только положительные, но и отрицательные степени . Если в этом разложении члены с отрицательными степенями отсутствуют ( для ), то наз. правильной точкой f (устранимой особой точкой). В правильной точке существует и конечен
полагая , получаем А. ф. во всем круге . Если ряд Лорана функции содержит лишь конечное число членов с отрицательными степенями zz0:
то точка наз. полюсом функции (кратности ); полюс характеризуется тем, что
Функция имеет в точке полюс кратности тогда и только тогда, когда функция имеет в этой точке нуль кратности . В случае, когда ряд Лорана содержит бесконечное число отрицательных степеней ( для бесконечного множества отрицательных индексов ), точка наз. существенно особой точкой; в таких точках не существует ни конечного, ни бесконечного предела функции . Коэффициент разложения функции в ряд Лорана с центром в изолированной особой точке наз. вычетом функции в точке :
Вычет функции в точке может быть определен формулой
где достаточно мало (так что круг не содержит особых точек функции f, отличных от ). Важная роль вычетов определяется следующей теоремой: если А. ф. в области , за исключением нек-рого множества изолированных особых точек, контур, ограничивающий область и не проходящий через особые точки функции , все особые точки , лежащие в , то
Эта теорема дает эффективное средство для нахождения интегралов (см. также Вычет).
Сумма членов ряда Лорана функции в точке , соответствующая отрицательным индексам ,
наз. главной частью ряда Лорана (или функции f) в точке . Именно главная часть определяет характер особенности функции в точке .
Функции, представимые в виде отношения двух функций, голоморфных в области D, наз. мероморф-ными в области Д. Мероморфная в области функция голоморфна в этой области за исключением, быть может, конечного или счетного множества полюсов; в полюсах значения мероморфной функции считаются равными бесконечности. Если допустить такие значения, то мероморфные в области Dфункции могут быть определены как функции, к-рые в окрестности каждой точки представимы рядом по степеням , содержащим конечное (зависящее от ) число членов с отрицательными степенями .
Часто аналитическими в области Dназ. как голоморфные, так и мероморфные в этой области функции. В этом случае голоморфные функции наз. также регулярными аналитическими, или просто регулярными.
Простейший класс А. ф. составляют функции, голоморфные во всей плоскости; такие функции наз. ц ел ы м и. Целые функции представимы рядами сходящимися во всей плоскости. К ним относятся многочлены от , функции
Теорема Вейерштрасса утверждает, что какова бы ни была последовательность комплексных чисел не имеющая предельных точек в , существует целая функция , обращающаяся в нуль в точках , и только в этих точках (среди точек могут быть совпадающие; им отвечает нуль функции Fсоответствующей кратности). При этом функция может быть представлена в виде (вообще говоря, бесконечного) произведения целых функций, каждая из к-рых имеет только по одному нулю. Напр.,
Функции, мероморфные во всей плоскости (т. е. представимые в виде отношения целых функций), наз. мероморфными функциями. Таковыми являются рациональные функции, , эллиптич. функции и др.
Согласно теореме Миттаг-Леффлера, для любой последовательности не имеющей предельных точек в , существует мероморфная функция с полюсами в точках (и только в этих точках), главные части к-рой в точках совпадают 1 с заранее заданными многочленами от . При этом функция G может быть представлена в виде (вообще говоря, бесконечной) суммы мероморфных функций, каждая из к-рых имеет полюс только в одной точке. Напр.,
Теоремы о существовании голоморфной функции с заданными нулями и мероморфных функций с заданными полюсами и главными частями справедливы и для произвольной области .
Важное значение для изучения А. ф. имеют связанные с ними геометрич. представления. Если f : А. ф., то образ f(D) области Dтакже является областью (принцип сохранения области). При отображение сохраняет углы в как по величине, так и по знаку, т. е. является конформным. Таким образом, существует тесная связь между аналитичностью и важным геометрич. понятием конформного отображения. Если f А. ф. в D ц при (такие функции наз. однолистными), то в Dи f определяет взаимно однозначное и конформное отображение области Dна область . Теорема Римана, основная теорема теории конформных отображений, утверждает, что в любой односвязной области, граница к-рой содержит более одной точки, существуют однолистные А. ф., конформно отображающие эту область на круг или полуплоскость (см. Конформное отображение. Однолистная функция).
Действительная и мнимая части функции голоморфной в области D, удовлетворяют в этой области уравнению Лапласа:
т. е. являются гармоническими функциями. Две гар-монпч. функции, связанные между собой уравнениями Коши Рпмана, наз. сопряженными. В односвязной области любая гармонич. функция имеет сопряженную функцию и является, тем самым, действительной частью нек-рой голоморфной в Dфункции f.
Связи с конформными отображениями п гармонич. функциями лежат в основе многих приложений теории А. ф.
Функция ( произвольное множество) наз. аналитической в точке , если существует окрестность этой точки, на пересечении к-рой с множеством функция представляется сходящимся степенным рядом. Функция наз. аналитической на множестве Е, если она ана-литнчна на нек-ром открытом множестве, содержащем Е(точнее, если существуют открытое множество, содержащее Е, и аналитическая на нем функция F, совпадающая с на множестве ). Для открытых множеств понятие аналитичности совпадает с понятием дифференцируемости по множеству. Однако в общем случае это не так; в частности, на действительной прямой существуют функции, не только имеющие производную, но и бесконечно дифференцируемые в каждой точке, к-рые не являются аналитическими ни в одной точке этой прямой. Для справедливости теоремы единственности А. ф. существенно свойство связности множества Е. Именно поэтому А. ф. рассматриваются обычно в областях, т. е. на открытых и связных множествах.
Все сказанное выше относилось к однозначным А. ф. f, рассматриваемым в данной области D(пли на данном множестве Е).комплексной плоскости. Задаваясь вопросом о возможности продолжения функции f как А. ф.в большую область, приходят к понятию А. ф., рассматриваемой в целом во всей своей естественной области существования. При таком продолжении данной функции область ее аналитичности, расширяясь, может налегать сама на себя, доставляя новые значения функции в точках плоскости, где она уже была определена. Поэтому А. ф., рассматриваемая в целом, вообще говоря, оказывается многозначной.
К необходимости изучения многозначных А. ф. приводят многие вопросы анализа (обращение функций, нахождение первообразных и построение А. ф. с заданной действительной частью в многосвязных областях, решение алгебраич. уравнений с аналитич. оэффициентами и др.); такими функциями являются алгебраические функции и т. д.
Регулярный процесс, приводящий к полной А. ф., рассматриваемой в своей естественной области существования, был указан К. Вейерштрассом; он носит назв. аналитического продолжения по Вейерштрассу.
Исходным является понятие элемента А. ф. степенного ряда с ненулевым радиусом сходимости. Такой элемент :
определяет нек-рую А. ф. f в своем круге сходимости К 0. Пусть точка круга , отличная от . Разлагая функцию в ряд с центром в точке , получаем новый элемент :
круг сходимости к-рого обозначим через . В общей части кругов и ряд сходится к той же функции, что и ряд . Если круг выходит за пределы круга , то ряд определяет функцию, заданную посредством , на нек-ром множестве вне (где ряд расходится). В этом случае элемент наз. непосредственным аналитич. родолжением элемента . Пусть цепочка элементов, в к-рой является непосредственным аналитич. родолжением ; тогда элемент наз. аналитич. родолжением элемента (посредством данной цепочки элементов). Может оказаться так, что центр круга принадлежит кругу , но элемент не является непосредственным аналитич. родолжением элемента . В этом случае суммы рядов и в общей части кругов и имеют различные значения; тем самым аналитич. родолжение может привести к новым значениям функции в круге .
Совокупность всех элементов, к-рые могут быть получены аналитич. родолжением элемента , образуют полную А. ф. (в смысле Веперштрасса), порожденную элементом ; объединение их кругов сходимости представляет собой (вейерштрассову) о б-ласть существования этой функции. Из теоремы единственности А. ф. следует, что А. ф. в смысле Вейерштрасса полностью определяется заданием элемента . При этом в качестве исходного может быть взят любой другой элемент, принадлежащий этой функции; полная А. ф. от этого не изменится.
Полная А. ф., рассматриваемая как функция точек плоскости, принадлежащих ее области существования D, вообще говоря, является многозначной. Чтобы избавиться от многозначности, функцию рассматривают не как функцию точек плоской области D, а как функцию точек нек-рой (лежащей над областью D).многолпстной поверхности Rтакой, что каждой точке области Dсоответствует столько (проектирующихся в нее) точек поверхности Л, сколько различных элементов с центром в этой точке имеет полная А. ф. ; на поверхности Л функция становится однозначной функцией. Идея перехода к таким поверхностям принадлежит Б. Риману, а сами они носят назв. римановых поверхностей. Абстрактное определение понятия римановой поверхности позволило заменить теорию многозначных А. ф. теорией однозначных А. ф. на римановых поверхностях.
Фиксируем область , принадлежащую области существования полной А. ф. , и к.-л. элемент Wфункции с центром в точке области . Совокупность всех элементов, к-рые могут быть получены аналитич. родолжением элемента посредством цепочек с центрами, принадлежащими А, наз. ветвью А. ф. f. Ветвь многозначной А. ф. может оказаться однозначной А. ф. в области А. Так, напр., произвольные ветви функций и соответствующие любой односвяз-ной области, не содержащей точку 0, являются однозначными функциями; при этом имеет ровно , а бесконечное множество различных ветвей в каждой такой области. Выделение однозначных ветвей (при помощи тех или иных разрезов области существования) и их изучение средствами теории однозначных А. ф. является одним из осп. приемов исследования конкретных многозначных А. ф. А АГончар.
Аналитические функции нескольких комплексных переменных. Комплексное пространство (состоящее из точек это векторное пространство над полем комплексных чисел с евклидовой метрикой
От 2n-мерного евклидова пространства оно отличается нек-рой асимметрией: при переходе от к (т. е. при введении в R2n комплексной структуры) координаты разбиваются на пары, к-рые выступают в комплексе .
Если комплексная функция задана в области и дифференцируема в каждой точке в смысле (т. е. как функция действительных переменных и ), то ее дифференциал может быть представлен в виде
где а символы и определяются так же, как и в плоском случае.