Математическая энциклопедия - фундаментальная система решений
Связанные словари
Фундаментальная система решений
линейной однородной системы обыкновенных дифференциальных уравнений базис векторного пространства действительных (комплексных) решений этой системы. (Система может состоять и из одного уравнения.) Более подробно это определение формулируется следующим образом.
Множество действительных (комплексных) решений {x1(t),...,xn(t)}(заданных на нек-ром множестве Е)линейной однородной системы обыкновенных дифференциальных уравнений наз. Ф. с. р. этой системы уравнений (на множестве Е) при выполнении совокупности следующих двух условий: 1) если действительные (комплексные) числа С 1,..., С n таковы, что функция C1x1(t)+...+Cnxn(t) тождественно равна нулю на Е, то все числа С 1,..., С n равны нулю; 2) для всякого действительного (комплексного) решения х(t)рассматриваемой системы уравнений найдутся действительные (соответственно комплексные) числа С 1,..., С n (не зависящие от t)такие, что x(t) = C1x1(t)+...+Cnxn(t) при всех
Если -произвольная невырожденная
-матрица, а {x1(t), ..., х п(t)}есть Ф.
с. р., то также есть Ф. с. р.; всякая Ф. .