Поиск в словарях
Искать во всех

Математическая энциклопедия - последовательный анализ

Последовательный анализ

раздел математич. статистики, характерной чертой к-рого является то, что число производимых наблюдений (момент остановки наблюдений) не фиксируется заранее, а выбирается по ходу наблюдений в зависимости от значений поступающих данных. Стимулом к интенсивному развитию и применению в статистич. практике последовательных методов послужили работы А. Вальда (A. Wald). Им было установлено, что в задаче различения (по результатам независимых наблюдений) двух простых гипотез т. н. последовательный критерий отношений вероятностей дает значительный выигрыш в среднем числе производимых наблюдений по уравнению с наиболее мощным классич. способом различения (определяемой леммой Неймана Пирсона) с фиксированным объемом выборки и теми же вероятностями ошибочных решений.

Основные принципы П. а. состоят в следующем. Пусть x1, x2, . . . последовательность независимых одинаково распределенных случайных величин и функция распределения зависит от неизвестного параметра q, принадлежащего нек-рому параметрич. множеству Q. Задача состоит в том, чтобы по результатам наблюдений вынести то или иное решение об истинном значении неизвестного параметра q.

В основе любой статистич. задачи решения лежат пространство Dзаключительных (терминальных) решений d(о значениях параметра q) и правило t, определяющее момент прекращения наблюдений, в к-рый и выносится заключительное решение. В классич. методах наблюдений момент t является неслучайным и фиксированным заранее; в последовательных методах t является случайной величиной, не зависящей от "будущего" (марковский момент, момент остановки). Формально, пусть есть s-алгебра, порожденная случайными величинами x1 ,. . .,x п. Случайная величина t=t(w), принимающая значения 0, 1, . . ., +, наз. марковским моментом, если событие. для каждого (). Пусть -совокупность тех измеримых множеств А, для к-рых и для каждого . Если интерпретируется как совокупность событий, наблюдаемых до случайного момента n (включительно), то можно интерпретировать как совокупность событий, наблюдаемых до случайного момента t (включительно). Заключительное (терминальное) решение d=d(w) есть измеримая функция со значениями в пространстве D. Пара d= (t, d)таких функций наз. (последовательным) решающим правилом.

Для выделения среди решающих правил "оптимального" задают функцию риска и рассматривают математич. ожидание . Существуют разные подходы к определению понятия оптимального решающего правила d* = (t*, d*). Один из них, бейесовский, основан на предположении, что параметр q является случайной величиной с априорным распределением p=p(dq). Тогда имеет смысл говорить о p-риске

и называть правило d*=(t*, d* )оптимальным байесовским решением (или p-оптимальным), если для любого другого (допустимого) правила. Наиболее распространенной формой риска W(t,q, d )является риск вида сt+W1(q, d), где константа интерпретируется как стоимость единичного наблюдения, a W1(q, d).является функцией потерь от заключительного решения.

В бейесовских задачах отыскание оптимального заключительного решения d*, как правило, не вызывает трудностей, и основные усилия направлены на отыскание оптимального момента остановки t*. При этом большинство задач П. а. укладывается в следующую схему "оптимальных правил остановки".

Пусть , цепь Маркова в фазовом пространстве , где х п - состояние цени в момент времени п,s-алгёбра интерпретируется как совокупность событий, наблюдаемых до момента времени п(включительно), а R х - распределение вероятностей, отвечающее начальному состоянию . Предполагается, что, прекращая наблюдение в момент времени п, получают выигрыш g(xn). Тогда средний выигрыш от остановки в момент т есть Exg(xt), где х - начальное состояние. Функцию s(x).sup Exg(xt), где sup берется по всем (конечным) моментам остановки t, наз. ценой, а момент t для к-рого для всех , наз. eоптимальным моментом остановки. О-оптимальные моменты наз. оптимальными. Основные вопросы теории "оптимальных правил остановки" таковы: какова структура цены s(x), как ее найти, когда существуют e-оптимальные и оптимальные моменты, какова их структура. Ниже приведен один из типичных результатов, касающихся поставленных вопросов.

Пусть функция g(x)ограничена: Тогда цена s(x)является наименьшей эксцессивной мажорантой функции g(x), т. е. наименьшей из функций f(x), удовлетворяющих двум свойствам

где . При этом момент

является e-оптимальньш для всякого e>0, цена s(x).удовлетворяет уравнению Вальда Беллмана

и может быть найдена по формуле

,

где

.

В том случае, когда множество Еконечно, момент

будет оптимальным. В общем случае момент t0 является оптимальным, если . Пусть

В соответствии с определением

Иначе говоря, прекращение наблюдений следует производить при первом попадании в множество Г. В связи с этим множество Сназ. множеством продолжения наблюдений, а Г множеством прекращения наблюдений.

Иллюстрацией этих результатов может служить задача различения двух простых гипотез, на к-рой А. Вальд продемонстрировал преимущество последовательных методов по сравнению с классическими. Пусть параметр 0 принимает два значения 1 и 0 с априорными вероятностями p и 1-p соответственно и множество заключительных решений Dсостоит также из двух точек: d=1 (принимается гипотеза H1,:q=1) и d=0 (принимается гипотеза H0:q=0). Если функцию W1(q, d).выбрать в виде

и положить

то для Rd (p) получают выражение

где

вероятности ошибок первого и второго рода, а Р p означает распределение вероятностей в пространстве наблюдений, отвечающее априорному распределению p. Если апостериорная вероятность гипотезы H1:q=1 относительно s-алгебры , то

где

Из общей теории оптимальных правил остановки, примененной к х п=( п,pn), следует, что функция r(p) =inftRd(p) удовлетворяет уравнению

Рейтинг статьи:
Комментарии:

Вопрос-ответ:

Что такое последовательный анализ
Значение слова последовательный анализ
Что означает последовательный анализ
Толкование слова последовательный анализ
Определение термина последовательный анализ
posledovatelnyy analiz это
Ссылка для сайта или блога:
Ссылка для форума (bb-код):