Поиск в словарях
Искать во всех

Математическая энциклопедия - проективное представление

Проективное представление

группы Gгомоморфизм этой группы в группу PGL(V).проективных преобразований проективного пространства P(V), связанного с векторным пространством Vнад полем k.

С каждым П. п. ср группы Gсвязано центральное расширение этой группы

(*)

где рестеств. проекция группы GL(V).на PGL(V), i - вложение мультипликативной группы поля kв GL(V).в виде скалярных матриц, а Ej=p-1(j(G)). Каждое сечение sпроекции рнад j(G) задает отображение

обладающее свойством

где с: - двумерный коцикл на группе G. Класс когомологий hэтого коцикла не зависит от выбора сечения s. Он определяется П. п. j и определяет класс эквивалентности расширения (*). Условие h=0 необходимо и достаточно для того, чтобы П. п. ф получалось факторизацией линейного представления группы G.

П. п. естественным образом возникают при изучении линейных представлений расширений групп. Важнейшие примеры П. п.: спинорное представление ортогональной группы и представление Вейля симплектич. группы. На П. п. непосредственно переносятся определения эквивалентности и неприводимости линейных представлений. Классификация неприводимых П. п. конечных групп получена И. Шуром (I. Schur, 1904).

П. п. наз. унитарным, если пространство Vгильбертово, а отображение Y можно выбрать так, чтобы оно принимало значение в группе U(V).унитарных операторов в V. Изучались унитарные неприводимые П. п. топологич. групп [4]; для связной группы Ли Gих изучение сводится к изучению унитарных неприводимых представлений односвязной группы Ли , алгебра Ли к-рой является центральным расширением алгебры

Ли группы G с помощью d-мерной коммутативной алгебры Ли, где d=dim H2 ().

Лит.:[1]Кириллов А. А., Элементы теории представлений, 2изд., М., 1978; [2] Кертис Ч., Райнер И., Теория представлений конечных групп и ассоциативных алгебр, пер. с англ., М., 1969; [3.1 Mackey G. W., "Acta math." 1958, v. 99, p. 265-311; [4] Вargmann V., "Ann. Math." 1947, v. 48, p. 568-640. А. А. Кириллов

Математическая энциклопедия. — М.: Советская энциклопедия

И. М. Виноградов

1977—1985

Рейтинг статьи:
Комментарии:

Вопрос-ответ:

Что такое проективное представление
Значение слова проективное представление
Что означает проективное представление
Толкование слова проективное представление
Определение термина проективное представление
proektivnoe predstavlenie это
Ссылка для сайта или блога:
Ссылка для форума (bb-код):