Математическая энциклопедия - совершенное кольцо
Связанные словари
Совершенное кольцо
левое ассоциативное кольцо, каждый левый модуль над к-рым обладает проективным накрытием. Правое совершенное кольцо определяется аналогично. Левое С. к. может и не быть правым С. к.
Эквивалентны следующие свойства кольца R: (1) R левое С. к.; (2) каждое множество попарно ортогональных идемпотентов кольца R конечно и каждый ненулевой правый R-модуль имеет ненулевой цоколь; (3) Rудовлетворяет условию минимальности для главных правых идеалов; (4) R удовлетворяет условию минимальности для конечно порожденных правых идеалов; (5) каждый правый R-модуль удовлетворяет условию минимальности для конечно порожденных подмодулей; (6) радикал Джекобсона J кольца R исчезает справа (т. е. для любой последовательности а 1, a2,. . . элементов из J найдется такой номер п, что произведение a1. . . an=0) и факторкольцо R/J классически полупросто; (7) каждый плоский левый R-модуль проективен; (8.) R содержит такие идемпотенты e1;. . ., е n, что при и е iRе i локальное кольцо для каждого i; (9) каждый левый R-модуль удовлетворяет условию максимальности для циклич. подмодулей; (10) для каждого га каждый левый R-модуль удовлетворяет условию максимальности для n-порожденных подмодулей; (11) каждый проективный левый R-модуль допускает разложение, относительно к-рого дополняемы все прямые слагаемые (см. Крулля Ремака Шмидта теорема).
Кольцо матриц над С. к. является С. к. Идемпотентные идеалы С. к. порождаются идемпотентами, центральными по модулю радикала. Групповое кольцо RG является С. к. тогда и только тогда, когда R С. к., а группа Gконечна. Кольцо всех эндоморфизмов абелевой группы Аоказывается С. к. в том и только в том случае, когда Аразлагается в прямую сумму конечной группы и конечного числа экземпляров аддитивной группы рациональных чисел. Локальные С. к. характеризуются возможностью дополнения до базы каждой линейно независимой подсистемы любого свободного левого модуля. Эквивалентны также следующие свойства: (1) R С. к. и все его факторкольца самоинъективны; (2) все факторкольца кольца R квазифробениусовы; (3) все факторкольца кольца R кообразующие; (4) Rv однорядное кольцо.
Лит.:[1] Каш Ф., Модули и кольца, пер. с нем., М., 1981; [2] Фейс К., Алгебра: кольца, модули и категории, пер. с англ., т. 1-2, М., 1977 79; [3] Итоги науки и техники. Алгебра. Топология. Геометрия, т. 19, М., 1981, с. 31 134 (см. также указанные там предыдущие обзоры по теории модулей).
Л. А. Скорняков.
Математическая энциклопедия. — М.: Советская энциклопедия
И. М. Виноградов
1977—1985