Математическая энциклопедия - трансверсальное отображение
Связанные словари
Трансверсальное отображение
трансверсально регулярное отображение, отображение, обладающее нек-рыми свойствами общего положения.
Пусть векторное расслоение над конечным клеточным пространством X, и пусть тотальное пространство расслоения вложено как открытое подмножество в нек-рое топология, пространство Z. Непрерывное отображение где М - гладкое многообразие, наз. трансверсальным к Xотображением, если F=f-1(X) является гладким подмногообразием в М с нормальным расслоениемv и если при этом ограничение f на трубчатую окрестность подмногообразия V в М задает морфизм расслоений
Напр., пусть гладкое отображение гладких многообразий, и пусть X - гладкое подмногообразие в N. Если дифференциал (где касательное расслоение) содержит в своем образе все векторы нормального к Xв Nрасслоения то f является Т. о.
Аппроксимационная теорема: во множестве всех непрерывных отображений Т. о. образуют множество 2-й категории. В частности, любое непрерывное отображение гомотопно Т. о. Эта теорема позволяет сопоставить алгебраич. инвариантам (гомотопич. классам отображения) наглядные геометрич. образы (классы нек-рой эквивалентности многообразий, являющихся прообразами при Т. о.). Возможен и обратный переход от геометрии к алгебре. Таким путем были вычислены, напр., различные группы бордизмов, классифицированы гладкие многообразия данного гомотопич. типа и т. д.
Понятие Т. о. можно перенести также в категории кусочно линейных и топологич. многообразий. При этом в кусочно линейной категории аппроксимационная теорема справедлива, а в топологич. категории этот вопрос остается (1984) открытым. Понятие Т. о. можно сформулировать и для бесконечномерных многообразий.
Лит.:[1] Том Р., в кн.: Расслоенные пространства и их приложения. Сб. пер., М., 1958, с. 293-351; [2] Браудер В., Перестройки односвязных многообразий, пер. с англ., М., 1983.
Ю. Б. Рудяк.
Математическая энциклопедия. — М.: Советская энциклопедия
И. М. Виноградов
1977—1985