Поиск в словарях
Искать во всех

Математическая энциклопедия - когомологий кольцо

Когомологий кольцо

кольцо, аддитивной группой к-рого является градуированная группа когомологий где Xнекоторый цепной комплекс, Агруппа коэффициентов, а умножение определяется по линейности набором отображений

для всех являющихся внутренними когомологич. умножениями. К. к. оказывается при этом снабженным структурой градуированного кольца.

Для существования отображений vm, n достаточно иметь набор отображений удовлетворяющих нек-рым дополнительным свойствам, и отображение т. е. умножение в группе коэффициентов А(см. [2]). Тогда отображения индуцируют отображения

к-рые в свою очередь индуцируют на когомологиях отображения vm, n.

В частности, структура кольца определена на градуированной группе где Gнекоторая группа и Zкольцо целых чисел с тривиальным действием группы G. Соответствующие отображения vm, n совпадают с -произведением. Это ассоциативное кольцо с единицей, а для однородных элементов а, степеней ри qсоответственно выполняется соотношение

Аналогично, -произведение определяет структуру кольца на группе где Н n( Х, Z) n -мерная группа сингулярных когомологий топология, пространства Xс коэффициентами в Z.

Лит.:[1] Картан А., Эйленберг С, Гомологическая алгебра, пер. с англ., М., 1960; [2] Маклейн С, Гомология, пер. с англ., М., 1966.

Л. В. Кузьмин.

Математическая энциклопедия. — М.: Советская энциклопедия

И. М. Виноградов

1977—1985

Рейтинг статьи:
Комментарии:

Вопрос-ответ:

Что такое когомологий кольцо
Значение слова когомологий кольцо
Что означает когомологий кольцо
Толкование слова когомологий кольцо
Определение термина когомологий кольцо
kogomologiy kolco это
Ссылка для сайта или блога:
Ссылка для форума (bb-код):