Поиск в словарях
Искать во всех

Математическая энциклопедия - кос теория

Кос теория

раздел топологии и алгебры, изучающий косы и группы, составленные из их классов эквивалентности, и различные обобщения этих групп [1]. Коса из пнитей объект, состоящий из двух параллельных плоскостей Р 0 и Р 1 в трехмерном пространстве R3, содержащих упорядоченные множества точек и из га простых дуг l1, ..., l п, пересекающих каждую параллельную плоскость Pt между Р 0 и Р 1, однократно и соединяющих точки { а i} с точками

Считается, что а,лежат на прямой La в Р й, точки bi- на прямой Lb в Р 1, параллельной La, причем ft,расположены под а i для каждого г (см. рис. 1). Косы изображаются в проекции на плоскость, проходящую через эта проекция может быть приведена в общее положение так, что имеется только конечное число двойных точек, попарно лежащих в разных уровнях, и пересечения трансверсальны.

Нить li косы w соединяет и определяет подстановку Если эта подстановка тождественна, то w наз. крашеной (или чистой) косой. Транспозиции (i i+1) отвечает простейшая коса si (см. рис. 2).

Во множестве всех кос с пнитями и с фиксированными P0. P1, {ai}, (bi} вводится отношение эквивалентности. Оно определяется гомеоморфизмами где П область между Р 0 и P1, тождественными на к-рые можно считать такими, что h(Pt)=Pt. Косы а и Р эквивалентны, если существует такой гомеоморфизм

Классы эквивалентности, далее также называемые косами, образуют группу кос В(п).относительно операции, определяемой следующим образом. Экземпляр П' области П помещается над другим экземпляром П" так, чтобы совпала с а затем сжимается вдвое. Образы кос дают косу нить li к-рой получается продолжением li с помощью Единичная коса класс эквивалентности, содержащий косу из n параллельных отрезков, коса w-1, обратная косе w, определяется отражением в плоскости Р 1/2. Условие на рис. 3. Отображение определяет эпиморфизм В(п).на группу S(п).перестановок пэлементов, ядром к-рого является подгруппа К(п), соответствующая всем чистым косам, так что имеется точная последовательность

Группа кос В(п).имеет две основные интерпретации. Первая пространство конфигурации получается отождествлением плоскостей Р t с помощью вертикальной проекции на Р 0, при к-рой образы точек при изменении tот 0 до 1 образуют след изотопии множества по причем Косе однозначно соответствует класс гомотопных петель в пространстве неупорядоченных наборов G(n).из ппопарно различных точек плоскости, и имеет место изоморфизм

Для крашеных кос аналогично строится изоморфизм

где F(п) - пространство упорядоченных наборов из га различных точек плоскости, так что К(п).можно отождествить с подгруппой, отвечающей накрытию

Вторая группа гомеотопий получается продолжениями изотонии до изотопии плоскости Р 0 тождественной вне нек-рого диска, причем При каждом tдва такие продолжения отличаются на гомеоморфизм, тождественный в точках а it. Косе однозначно соответствует компонента пространства гомеоморфизмов Y(п).плоскости, отображающих множество на себя, и имеет место изоморфизм

Каждому гомеоморфизму сопоставляется автоморфизм свободной группы ранга , определенный с точностью до внутреннего, к-рый в свою очередь дает гомоморфизм Элементы образа наз. Носовыми автоморфизмами свободной группы. В частности, косе si отвечает автоморфизм

если базис Fn). Любой носовой автоморфизм а обладает свойствами:

с точностью до внутреннего (смысл А i ниже), эти свойства характеризуют косовые автоморфизмы. Косы являются образующими группы В (п), т. е. причем

Оказывается, что (1) копредставление для В(п).(см. рис. 4). Имеет место расщепляющая точная последова-

тельность (получающаяся из локально тривиального расслоения со слоем

к-рая приводит к нормальному ряду

со свободными факторами причем А i имеет "дополнение" Un-i, изоморфное К( п-i-1). Каждый элемент может быть представлен единственным образом в виде где pw выбранный представитель для в В(п), а Приведение косы к такой форме наз. ее причесыванием. Это решает проблему тождества в В(п).

Копредставление для К(п).таково: образующие (см. рис. 5)

соотношения

Оно может быть получено как копредставление ядра естественного гомоморфизма в S(п).абстрактной группы В (n), заданной копредставлением (1) с помощью Шрей ера системы

Центр группы B(п) - бесконечная циклич. группа, порожденная элементом Коммутант В' (п).совпадает с В" (п).при В'(3) изоморфна свободной группе ранга 2, а В'(4) -полупрямому произведению двух таких групп. Фактор по коммутанту бесконечная циклич. группа, порожденная образами si. Элементы конечного порядка в В(га) отсутствуют. Группа К(п).переходит в себя при эндоморфизмах с неабелевым образом. В частности, вполне характе-ристич. подгруппа в В(n). а также и в К(п).(см. [15]).

Проблема сопряженности в В(n) решается существенно сложнее проблемы тождества. Имеется единственная нормальная по Гарсайду форма косы где так наз. элемент Гарсайда, W - положительная, т. е. имеющая запись через si с положительными показателями, коса. Косе w конечным числом операций, определяемых по i(сопряжение с нек-рыми элементами, выбор элементов максимальной степени и т. п.), сопоставляется нек-рое множество слов из к-рого выбирается слово в нормальной форме с минимальным Т. Это так наз. верхняя форма косы w. Оказывается, что две косы сопряжены тогда и только тогда, когда их верхние формы совпадают (см. [7]). Представление Бурау группы кос В(п).в группу матриц над кольцом целочисленных многочленов одной переменной определяется соответствием:

где Ik - единичная матрица порядка k. Матрица есть приведенная матрица Александера (см. Александера инварианты).зацепления, полученного замыканием косы w (см. ниже). Для крашеной косы из аналогичной матрицы Гаснера получается полная матрица Александера. Проблема точности этих представлений не решена (1982) (см. [2]).

То, что пространства F(п).и G(n).асферичны, дает возможность вычислить гомологии групп кос.

Гомологии К(п).(см. [16]): гомологически К(п).совпадает с произведением букетов окружностей, в к-рых число окружностей увеличивается от одной до n-1. Кольцо когомологий изоморфно внешнему градуированному кольцу, порожденному одномерными элементами с соотношениями В качестве wrl можно взять формы

отвечающие обходу диагоналей Гомологии В(п).(см. [8], [12]): гомоморфизм может быть продолжен вложением ; индуцированный гомоморфизм в когомологиях эпиморфен, т. е. когомологии mod 2 группы В(п).порождаются классами ШтифеляУитни.

Имеется естественное отображение G(n) в пространство сфероидов (вокруг и точек берутся малые диски, к-рые канонически со степенью I отображаются в сферу, а все дополнение в точку). Это отображение (см. [14]) устанавливает гомологич. эквивалентность предельного пространства (индекс означает, что берется компонента сфероидов степени 0). Относительно нестабильных групп гомологии В(п).доказано [16], что они конечны, стабилизируются с ростом и и имеется правило повторения Дано [17] описание вычисления этих групп.

Рейтинг статьи:
Комментарии:

Вопрос-ответ:

Что такое кос теория
Значение слова кос теория
Что означает кос теория
Толкование слова кос теория
Определение термина кос теория
kos teoriya это
Ссылка для сайта или блога:
Ссылка для форума (bb-код):