Поиск в словарях
Искать во всех

Математическая энциклопедия - распределений полное семейство

Распределений полное семейство

семейство вероятностных мер , заданное на измеримом пространстве , для к-рого единственной несмещенной оценкой нуля в классе -измеримых функций на является функция, тождественно равная нулю, т. е. для любой -измеримой функции , определенной на и удовлетворяющей соотношению

следует, что . Напр., экспоненциальное семейство распределений является полным. Если соотношение (*) выполняется при дополнительном предположении об ограниченности функции f(x), то семейство , наз. о г р а н и ч е н н о п о л н ы м. Ограниченно полные семейства распределений достаточных статистик играют важную роль в математич. статистике, в частности в задаче построения подобнях критериев, обладающих Неймана структурой.

Лит.:[1] Л и н н и к Ю. В., Статистические задачи с мешающими параметрами, М., 1966; [2] Л е м а н Э., Проверка статистических гипотез, пер. с англ., 2 изд., М., 1979.

М. С. Никулин.

Математическая энциклопедия. — М.: Советская энциклопедия

И. М. Виноградов

1977—1985

Рейтинг статьи:
Комментарии:

Вопрос-ответ:

Что такое распределений полное семейство
Значение слова распределений полное семейство
Что означает распределений полное семейство
Толкование слова распределений полное семейство
Определение термина распределений полное семейство
raspredeleniy polnoe semeystvo это
Ссылка для сайта или блога:
Ссылка для форума (bb-код):