Математическая энциклопедия - бесконечно малых исчисление
Связанные словари
Бесконечно малых исчисление
термин, ранее объединявший различные разделы математич. анализа, связанные с понятием бесконечно малой функции. Хотя "метод бесконечно малых" (в той или иной форме) с успехом применялся учеными Древней Греции и средневековой Европы для решения задач геометрии и естествознания, точные определения основных понятий теории бесконечно малых функций сложились только в 19 в. Для понимания значения этого метода важно заметить, что практич. интерес представляют не Б. м. и. сами по себе, а те случаи, в к-рых рассмотрение Б. м. и. приводит к величинам конечным. В истории математики основное значение имели трп типа такого рода задач.
1) Простейшие задачи древнегреческих математиков на исчерпывания метод, в к-рых бесконечно малые используются лишь для доказательства равенства двух заранее заданных величин (или двух отношений заранее заданных величин).
2) Более сложные задачи на метод исчерпывания, в к-рых искомая конечная величина получается в виде предела суммы
неограниченно возрастающего числа бесконечно малых величин. Эти задачи впоследствии привели к созданию интегрального исчисления.
3) Задачи, в к-рых конечная величина получается в виде предела отношения, бесконечно малых величин. Они послужили материалов для создания дифференциального исчисления.
Изобретение метода исчерпывания приписывается Евдоксу Книдскому (4 в. до н. э.). Во всяком случае, он проходит в качестве основного приема доказательства через всю 12-ю книгу "Начал" Евклида (3 в. до н. э.). В современной форме логич. схема рассуждений Евклида может быть записана так: если все отношения
равны между собой и имеют постоянное значение и если при обе разности бесконечно малы, то
Напр., для сравнения площадей двух кругов Евклид вписывает в каждый из них по квадрату и доказывает, что площадь этого квадрата превосходит половину площади круга: остающиеся четыре сегмента (рис. 1) составляют вместе меньше половины площади круга; дополнив квадрат до правильного восьмиугольника, он обнаруживает, что остаток составляет уже меньше четверти круга, затем восьмиугольник дополняется до правильного шестнадцатиугольника, причем оставшиеся шестнадцать сегментов составляют в сумме уже меньше одной восьмой доли площади круга и т. д. Таким образом, площадь круга постепенно "исчерпывается" при переходе к вписанным многоугольникам со все большим числом сторон. Так как в двух кругах площади соответствующих многоугольников относятся как квадраты радиусов, то Евклид заключает отсюда, при помощи доказательства от противного, что то же самое отношение имеют и площади кругов.
Более широкое и свободное употребление бесконечно малых наблюдается у Архимеда (3 в. до н. э.).
В своих соч. "О коноидах и сфероидах" и "О спиралях" Архимед систематически пользуется при вычислении площадей и объемов методом, к-рый до своей идее вполне аналогичен современному определению интеграла. Вот как, напр., Архимед определяет площадь первого витка спирали (рис. 2), к-рая наз. теперь "архимедовой" и к-рая в полярных координатах имеет уравнение
В рассматриваемую фигуру Sвписывается фигура, состоящая из круговых секторов с углом при вершине (эти секторы для случая изображены на рис. 3 заштрихованными), а вокруг описывается фигура, состоящая из аналогичных круговых секторов (на рис. 3 изображены без штриховки). Легко видеть, что в обоих случаях площадь k-го сектора
Из построения ясно, что площадь S заключена в пределах
где
Так как
то при любом
Архимед выражает последнее соотношение в геометрия, форме: при любом
где К - площадь круга, изображенного на рис. 2. Из сопоставления (1) и (2) и того обстоятельства, что разность
при является бесконечно малой, Архимед делает вывод, что
Конец изложенного рассуждения показывает, каким образом Архимедом был развит и усовершенствован метод исчерпывания Евдокса. Начало же этого рассуждения показывает, что Архимед владел и приемами, к-рые были отнесены выше ко второй группе и к-рые но своему идейному замыслу соответствуют современному интегральному исчислению.
При помощи интегрального исчисления рассматриваемая площадь вычисляется как
Входящий в эту формулу интеграл, по определению, есть предел сумм вида
где
В частном случае, когда
при получается архимедова сумма , а при архимедова сумма . Следует специально отметить, что при выборе (3) точек деления jk архимедовы суммы и совпадают с Дарбу суммами, для к-рых и в общем случае гарантировано выполнение неравенства (1). Таким образом, Архимед для своей частной задачи проделывает весь ряд рассуждений, свойственных интегральному исчислению, и притом в его логически законченной форме (точные оценки сверху и снизу при помощи сумм Дарбу), разработанной, в качестве общей теории лишь во 2-й пол.. 19 в. Аналогично Архимед поступает и в ряде других задач на вычисление площадей и объемов.
Отсюда следует, что к концу своего развития древнегреческая математика подошла и к решению задач второй из намеченных выше групп. Следует, однако, здесь же отметить ii принципиальное отличие всего характера мышления математиков древности от стиля мышления математиков нового времени. В рассмотренной выше в виде примера задаче Архимед не вычисляет
а берет, не указывая откуда, величину и доказывает равенство от противного, устанавливая, что в силу (1), (2) и бесконечной малости разности неравенство привело бы к противоречию. Греческие математики не только не разработали к.-л. общих правил вычисления пределов, но и вообще не сформулировали лежащего по существу в основе их приемов, понятия предела (даже общее назв. "метод исчерпывания" для их приемов возникло лишь в новое время). Тем более, древняя наука не создала ничего подобного современному алгоритму интегрального исчисления, благодаря к-рому теперь совсем не обращаются при вычислении нового интеграла к определению интеграла в качестве предела сумм, а пользуются значительно более простыми в практич. употреблении правилами интегрирования функций различных специальных классов. Из соч. Архимеда (особенно из "Послания Эратосфену") можно усмотреть, что его логически отточенному методу оценки площадей и объемов при помощи сумм возрастающего числа неограниченно убывающих (т. е. бесконечно малых в современном смысле слова) слагаемых предшествовал более примитивный, но более наглядный метод, восходящий, по утверждению Архимеда, к Демокриту (4 в. до н. э.). Архимед указывает, в частности, что Демокрит раньше Евдокса определил (хотя и без строгого обоснования своих результатов) объем пирамиды.
Для Евклида и Евдокса основную трудность при выводе объема пирамиды представляло доказательство того факта, что объемы двух пирамид с равными высотами и равновеликими основаниями равны. Трудность эта преодолевалась в "Началах" Евклида применением метода исчерпывания.
Судя по указаниям Архимеда, демокритов "атомистический" метрд доказательства равенства объемов двух пирамид с равными высотами и равновеликими основаниями (рис. 4) можно представить себе так: из соображений подобия вытекает, что площади сечений, проведенных на равной высоте в наших пирамидах, равны; объемы пирамид воспринимаются просто как "суммы" этих площадей, что и позволяет сразу, исходя из равенства соответствующих членов двух сумм, заключить о равенстве самих сумм. В соч. Архимеда дается много примеров применения этого метода к решению более сложных задач. Архимед считал такой метод нестрогим, но очень ценным с эвристической стороны (т. е. для первоначального получения новых результатов, к-рые потом должны быть обоснованы более строго) и был в этом с современной точки зрения, конечно, прав, так как метод Демокрита является лишь не выдерживающей строгой критики попыткой заменить процесс предельного перехода
несостоятельной метафизич. гипотезой о возможности получения объемов суммированием площадей.
Послание Архимеда к Эратосфену, получившее краткое назв. "Эфодикон" (руководство), много комментировалось и цитировалось авторамп эллинистич. эпохи, но не дошло до европейских математиков эпохи создания современной высшей математики, к-рые в отношении необычайно простого атомистич. метода рассуждений Демокрита в лучшем случае должны были довольствоваться довольно смутными литературными указаниями других источников (текст "Эфодикона" был вновь 'открыт лишь в 1906). Тем не менее этот метод получил в 17 в. блестящее развитие в работах И. Кеплера (J. Kepler) и Б. Кавалье-ри (В. Cavalieri). И. Кеплер в своей "Стереометрии винных бочек" (1615) определяет объем 92 тел вращения.