Поиск в словарях
Искать во всех

Математическая энциклопедия - регулярный автоморфизм

Регулярный автоморфизм

автоморфизм j группы Gтакой, что gj№g ни для какого неединичного элемента gгруппы G(т. е. образы всех неединичных элементов группы при Р. а. должны быть отличны от своих прообразов). Если j Р. а. конечной группы G, то для каждого простого р, делящего порядок группы, он оставляет инвариантной (т. е. отображает в себя) единственную силовскую р-подгруппу Sp и любая инвариантная относительно j р-подгруппа группы Gсодержится в Sp. Конечная группа, допускающая Р. а. простого порядка, нильпотентна [2], однако существуют разрешимые ненильпотентные группы, допускающие Р. а. составного порядка.

Лит.:[1] G o r e n s t e i n D., Finite groups, N. Y., 1968; [2] T h o m p s o n J.G., "Proc. Nac. Res. Acad. Sci.", 1959, v. 45, p. 578-81. Н. Н. Вильямс.

Математическая энциклопедия. — М.: Советская энциклопедия

И. М. Виноградов

1977—1985

Рейтинг статьи:
Комментарии:

Вопрос-ответ:

Что такое регулярный автоморфизм
Значение слова регулярный автоморфизм
Что означает регулярный автоморфизм
Толкование слова регулярный автоморфизм
Определение термина регулярный автоморфизм
regulyarnyy avtomorfizm это
Ссылка для сайта или блога:
Ссылка для форума (bb-код):