Поиск в словарях
Искать во всех

Математическая энциклопедия - дифференцируемое многообразие

Дифференцируемое многообразие

локально евклидово пространство, наделенное дифференциальной структурой.

Пусть Xхаусдорфово топологич. пространство. Если для каждой точки хО X найдется ее окрестность U, гомеоморфная открытому множеству пространства Rn, то Xназ. локально евклидовым прост ранством, или топологическим многообразием размерности п. Пара (U,j), где j указанный гомеоморфизм, называется локальной картой Xв точке х. Таким образом, каждой точке соответствует набор пдействительных чисел ( х 1, . .., х п), называемых координатами x в карте (U,j).

Семейство карт {(Ua, ja)}, aОA, наз. п-мерным С k -атласом (, а)многообразия X, если: а) совокупность всех Ua покрывает X,б) для любых таких, что отображение

принадлежит дифференцируемости классу Ck;jab является дифференцируемым отображением с отличным от нуля якобианом и наз. преобразованием координат точки хиз карты (Ua,ja) в карту (Ub,jb).

Два Ck -атласа наз. эквивалентными, если их объединение снова является С k -атласом. Совокупность Ck -атласов разбивается на классы эквивалентности, к-рые наз. Ck- структурами, при дифференциальными (или гладкими) структурами, при k=а аналитическими структурами. Топологич. многообразие X, наделенное Ck -структурой, называется Ck -м ногообразием, или дифференцируемым многообразием класса Ck.

Понятие дифференциальной структуры можно ввести для произвольного множества X, заменив гомеоморфизмы ja биективными отображениями на открытые множества Rn; при этом топология Ck -многообразия описывается как топология объединения, построенная по любому атласу соответствующей структуры. В этом случае n-мерные многообразия обладают очевидной re-мерной C0 -структурой.

Задачи аналитич. и алгебраич. геометрии приводят к необходимости рассматривать в определении дифференциальной структуры вместо пространства Rn более общие пространства Cn или даже Kn, где Кполное недискретное нормированное поле. Так, в случае К = С соответствующая Ck -структура, непременно оказывается Ca -структурой, она наз. комплексно аналитической, или просто комплексной, а соответствующее Д. м.комплексным многообразием. При этом на любом таком многообразии есть и естественная действительная С а -структура.

На любом С а -многообразии есть согласованная с ней С°°-структура, и на Ck -многообразии, С r -структура, если Обратно, любое паракомпактное Cr -многообразие, можно наделить

С а -структурой, совместимой с заданной, причем эта структура (с точностью до изоморфизма, см. ниже) единственна. Может, однако, случиться, что С-многообразие нельзя снабдить C1 -структурой (т. е. существуют несглаживаемые многообразия), а если это удается, то такая структура неединственна. Например, число q(n) С 1 -неизоморфных -структур на n-мерной сфере таково:

Пусть f :непрерывное отображение С r- многообразий X, У; оно наз. Ck- морфизмом (или Ck- отображение м или отображением класса Ck). Д. м., если для любой пары карт {Ua, ja )на Xи (Vb , yb) на У такой, что f(Ua)Vb. отображение

принадлежит классу С k. Биективное отображение f такое, что оно и f-1 суть С n -отображения, наз. С п- изоморфизмом (или диффеоморфизмом класса С n. В этом случае Xи У и определяющие и: С-структуры наз. С n -изоморфными.

Подпространство У n-мерного С k -многообразия X наз. С k- подмногообразием размерности пв X, если для всякой точки существуют ее окрестность и карта (U, ф) С k -структуры Xтакие, что

и ф индуцирует гомеоморфизм Vна пересечение j(UЗY). с (замкнутым) подпространством другими словами, существует карта с координатами х 1, . .., х п такая, что определяется соотношениями х т+1 = ... = х n = 0.

Отображение f :наз. С k -вложением, если f(X)есть С k -подмногообразие в У, а С k -диффеоморфизм. Всякое n-мерное С k -многообразие допускает вложение в R2n+1 и даже в R2n. Более того, множество таких вложений является всюду плотным в пространстве отображений С k( Х,R2n+1) относительно компактно-открытой топологии. Тем самым, рассмотрение Д. м. как подмногообразий евклидова пространства дает один из способов изложения их теории, на этом пути устанавливаются, напр., указанные выше теоремы о Ca -структурах.

Рейтинг статьи:
Комментарии:

Вопрос-ответ:

Что такое дифференцируемое многообразие
Значение слова дифференцируемое многообразие
Что означает дифференцируемое многообразие
Толкование слова дифференцируемое многообразие
Определение термина дифференцируемое многообразие
differenciruemoe mnogoobrazie это

Похожие слова

Ссылка для сайта или блога:
Ссылка для форума (bb-код):