Поиск в словарях
Искать во всех

Математическая энциклопедия - гомотопическая группа

Гомотопическая группа

обобщение фундаментальной группы, предложенное В. Гуревичем [1] в связи с задачей о классификации непрерывных отображений. Г. г. определены для любого . При Г. г. совпадает с фундаментальной группой. Определение Г. г. не конструктивно, и поэтому их вычисление является трудной задачей, общие методы решения к-рой были выработаны только в 50-х гг. 20 в. Значение Г. г. определяется тем, что все задачи теории гомотопий более или менее сводятся (см. Гомотопический тип).к задаче вычисления тех или иных Г. г.

Пусть

единичный re-мерный куб, его грань и объединение всех остальных его граней. Для любой пунктированной пары (см. Пунктированный объект).символом (или просто ) обозначается пунктированное множество всех гомотопич. классов [u] (см. Гомотопия).отображений

отмеченным элементом (нулем) этого множества служит класс постоянного отображения, переводящего весь куб в точку . Каждое непрерывное отображение

индуцирует нек-рый морфизм

пунктированных множеств. Для любого множества и морфизмы составляют нек-рый функторpn из категории пунктированных пар в категорию пунктированных множеств. Этот функтор гомотопически инвариантен, то есть когда fи g гомотопны (как отображения пунктированных пар). Кроме того, он нормирован, в том смысле, что если

При в множество можно ввести операцию сложения, относительно к-рой оно будет группой (при n>2 даже абелевой): по определению, если и , то , где отображение

определенное формулой

Получающаяся группа наз. n-й гомотопической группой (или n-мерной Г. г.) пунктированной пары ; говорят также о Г. г. пары (X, .А) в точке х 0 или о Г. г. пространства Xотносительно подпространства А в точке х 0. Отображения являются гомоморфизмами этих групп. Таким образом, при можно считать, что функтор принимает значения в категории групп (при даже абелевых). При группа обозначается , или просто , и наз. абсолютной гомотопической группой пунктированного пространства (или пространства Xв точке х 0 ). Ее элементами являются гомотопич. классы отображений где граница куба . Для таких отображений формула (1) имеет смысл и при и=1, так что множество оказывается группой. Эта группа совпадает с классической фундаментальной группой. Обычно групповая операция в наз. умножением. Эта группа, вообще говоря, неабелева, тогда как группа абелева. Для любого группы и соответствующие гомоморфизмы составляют нек-рый функтор из категории пунктированных пространств в категорию групп (при в категорию абелевых групп). Этот функтор является композицией функтора вложения и построенного выше функтора .

Функтор распространяется и на случай , если понимать под пунктированное множество компонент линейной связности пространства X;нулем этого множества является компонента, содержащая точку . Множество при не определяется. Для упрощения формулировок множества и обычно также наз. Г. г., хотя они, вообще говоря, являются лишь пунктированными множествами.

Для любого элемента отображение представляет собой отображение и потому определяет нек-рый элемент Г. г. Этот элемент зависит только от хи обозначается символом . Получающееся отображение является морфизыом пунктированных множеств (при гомоморфизмом групп) и наз. граничным гомоморфизмом, или граничным оператором. Граничный гомоморфизм вместе с гомоморфизмами и , индуцированными вложениями и позволяет написать бесконечную слева последовательность групп и гомоморфизмов:

Это точная последовательность;она наз. точной гомотопической последовательностью пары и обозначается обычно . Если для всех , то гомоморфизм является изоморфизмом (также для всех п).

Граничный гомоморфизм обладает свойством естественности, т. е. является морфизмом функтора в функтор [точнее, в функтор , где . Это позволяет определить как функтор, принимающий значения в категории точных последовательностей пунктированных множеств, являющихся, за исключением последних шести множеств, абелевыми группами, а за исключением последних трех множеств,группами.

Пусть произвольное расслоение в смысле Серра и пусть и Отображение ропределяет нек-рое отображение пунктированных пар. Для любого индуцированный этим отображением гомоморфизм является изоморфизмом.

В частности, это верно при . В этом случае формула однозначно определяет нек-рый гомоморфизм где слой расслоения рнад точкой . Этот гомоморфизм наз. гомотопической трансгрессией. Он входит в точную последовательность

Эта последовательность наз. гомотопической последовательностью расслоения . Сопоставление расслоению его гомотопич. последовательности приводит к нек-рому функтору на категории всех (пунктированных) расслоений.

В частном случае, когда ресть стандартнее Серра расслоение путей над пространством X, для любого имеет место изоморфизм . где петель пространство пространства X. Этот изоморфизм наз. изоморфизмом Гуревича.

Перечисленные свойства по существу однозначно определяют Г. г. т. е. могут быть приняты за аксиомы, описывающие эти Г. г. Именно, пусть произвольная последовательность гомотопически инвариантных нормированных функторов, заданных на категории пунктированных пространств, принимающих значения в категории пунктированных множеств и обладающих тем свойством, что для любого расслоения в смысле Серра любого подмножества и любой точки индуцированный гомоморфизм является изоморфизмом. Такая последовательность наз. гомотопической системой, если для любого задан морфизм функтора в функтор (при в ), являющийся изоморфизмом для любой пунктированной пары , для которой при всех . Любая гомотопич. система изоморфна построенной выше гомотопич. системе, состоящей из Г. г. Более того, при в пунктированные множества (а также в множества ) можно единственным образом ввести групповое строение (структуру группы) так, чтобы все мор-физмы были гомоморфизмами [это строение совпадает, стало быть, с тем, к-рое определяется формулой (1)]. В группах же при и можно только ввести еще инверсную групповую операцию. Все это и означает, что перечисленные выше свойства однозначно определяют Г. г. (с точностью до порядка сомножителей в некоммутативных группах).

Для любого отображения и любого пути , соединяющего точку с точкой , формула определяет нек-рую гомо-топию отображения . По аксиоме о распространении гомотопии (см. Корасслоение).эта гомотопия может быть распространена до нек-рой гомотопии обладающей тем свойством, что . Конечное отображение u1 этой гомотопии переводит в , то есть представляет собой отображение

Соответствующий элемент Г. г. зависит только от класса отображения ии гомотопич. класса пути и обозначается символом (при n=1 символом ). Семейство определяется тем самым как локальное семейство на пространстве X, т. е. на фундаментальном группоиде этого пространства. В частности, для любой точки группа оказывается группой операторов группы . При эти операторы действуют как внутренние автоморфизмы: , а при определяют группу как -модуль. Для любого непрерывного отображения индуцированные гомоморфизмы являются операторными гомоморфизмами (гомоморфизмами модулей):.

Аналогичным образом группы составляют локальное семейство Г. г. на подпространстве А . В частности, является группой операторов Г. г. , так что при группа будет модулем. Группа является скрещенным модулем (см. Скрещенные модули), где граничный гомоморфизм.

Группа служит группой операторов не только групп , но и групп , а также, в силу естественного гомоморфизма -группой операторов групп Относительно этого действия группы все гомоморфизмы точной последовательности являются операторными гомоморфизмами, так что группа может рассматриваться как группа операторов последовательности Это равносильно тому, что последовательности составляют локальное семейство точных последовательностей на подпространстве А.

В случае, когда дополнение представляет собой объединение непересекающихся открытых n-мерных клеток, -модуль является свободным модулем (при свободным скрещенным модулем) и обладает системой свободных образующих базисом, находящимся в биективном (не обязательно естественном) соответствии с клетками из (теорема Уайтхеда).

Отображения находятся в биективном соответствии с отображениями где произвольная n-мерная сфера, а нек-рая ее точка; поэтому элементы группы можно рассматривать как гомотопич. классы отображений Это верно и при n=0. Указанное отождествление зависит от выбора нек-рого относительного гомеоморфизма . Обычно сфера Sn и гомеоморфизм j предполагаются раз навсегда выбранными и фиксированными. В первоначальном, ставшем малоупотребительным определении Гуревича, сфера не фиксировалась, а гомеоморфизм задавался с точностью до гомотопии. Такое задание гомеоморфизма равносильно заданию нек-рой ориентации сферы Таким образом, по Гуревичу, элементами группы являются пунктированные гомотопич. классы отображений ориентированной re-мерной сферы в пространстве X. Множество непунктированных гомотопич. классов отображений находится в биективном соответствии с орбитами, действия группы в группе . Если (или, более общим образом, если группа тривиально действует на группе , в этом случае пространство наз. гомотопически п- простым), то не зависит от точки (так что в этом случае обозначение полностью оправдано). Эта группа естественным образом отождествляется с множеством , к-рое является, стало быть, в этом случае группой. Пространство, гомотопическн n-простое для всех и, наз. абелевым.

Рейтинг статьи:
Комментарии:

Вопрос-ответ:

Что такое гомотопическая группа
Значение слова гомотопическая группа
Что означает гомотопическая группа
Толкование слова гомотопическая группа
Определение термина гомотопическая группа
gomotopicheskaya gruppa это
Ссылка для сайта или блога:
Ссылка для форума (bb-код):