Поиск в словарях
Искать во всех

Математическая энциклопедия - интеграл по траекториям

Интеграл по траекториям

континуальный интеграл, функциональный интеграл,интеграл, областью интегрирования к-рого служит то или иное функциональное пространство. Чаще всего И. по т. определяется как обычный интеграл Лебега от функционала, заданного на пространстве функций (возможно, обобщенных) по нек-рой мере (быть может, комплексной) в этом пространстве.

В тех случаях, когда лебсговская конструкция интеграла оказывается неприменимой, рассматриваются и другие способы континуального интегрирования. Напр., вместо мер используются предмеры (или квазимеры), т. е. аддитивные функции множества, определенные на алгебре всех цилиндрич. подмножеств функционального пространства и такие, что их сужения на любую s-подалгебру цилиндрич. множеств с фиксированным носителем являются уже мерами. Иногда И. по т. определяется как предел при n-кратных интегралов (вычисляемых по мере Лебега в Rn), возникающих при подходящей аппроксимации пространства функций (области интегрирования) п-мерным пространством, а интегрируемого функционала функцией от ппеременных. Эти и другие определения И. по т. применимы каждое к своему специальному классу функционалов, причем в тех случаях, когда эти определения пригодны одновременно, они могут, вообще говоря, приводить к различным значениям интеграла. Наконец, И. по т., встречающиеся в литературе по физике, подчас вообще не имеют точного смысла, а рассматриваются как формальные выражения, с к-рыми оперируют как с обычными интегралами (замена переменных, мажорирование, дифференцирование по параметру, предельный переход и т. д.), часто, однако, получая при этом серьезные и эвристически ценные результаты.

И. по т., появившиеся первоначально в теории случайных Процессов, позднее были использованы для представления группы

а также полугруппы операторов

где H Штурма Лиувилля оператор в пространстве Rn (оператор энергии для системы квантовых частиц). Подобные представления были получены затем для более широкого класса операторов Н(всякое такое представление обычно наз. формулой Фейнмана Каца) и явились удобным средством для изучения свойств этих операторов (оценка границ спектра, асимптотика собственных значений, свойства рассеяния и т. д. [3]).

Среди применений И. по т. в математич. физике (основанных главным образом на формуле Фейнмана Каца) наиболее глубоким оказалось их использование в проблемах квантовой статистич. физики [4] и квантовой теории поля [5], [6]. С И. по т. связано отчасти и развитие общих вопросов теории меры и интегрирования в бесконечномерных пространствах [7], [8].

Лит.:[1] Фейнман Р., Xибс А., Квантовая механика и интегралы по траекториям, пер. с англ., М., 1968; [2] Кац М., Вероятность и смежные вопросы в физике, пер. с англ., М., 1.965; [3] Гельфанд И. М., Яглом А. М., "Успехи матем. наук", 1956, т. 11, № 1, с. 77-114; [4] Genibrе J., Statistical mechanics and quantum field theory, N.Y., 1971; [5] Боголюбов H. H., Ширков Д. В., Введение в теорию квантованных полей, М., 1957; [6] Саймон Б., Модель Р(j)2 евклидовой квантовой теории поля, пер. с англ., М., 1976; [7] Смолянов О. Г., Фомин С. В., "Успехи матем. наук", 1976, т. 31, .№ 4, с.3-56; [8] Sсhwаrtz L., Radon measures on arbitrary topological spaces and cylindrical measures, L., 1973.

P. А. Минлос.

Математическая энциклопедия. — М.: Советская энциклопедия

И. М. Виноградов

1977—1985

Рейтинг статьи:
Комментарии:

Вопрос-ответ:

Что такое интеграл по траекториям
Значение слова интеграл по траекториям
Что означает интеграл по траекториям
Толкование слова интеграл по траекториям
Определение термина интеграл по траекториям
integral po traektoriyam это
Ссылка для сайта или блога:
Ссылка для форума (bb-код):