Поиск в словарях
Искать во всех

Математическая энциклопедия - конструктивного подбора принцип

Конструктивного подбора принцип

принцип Маркова,логико-философский принцип конструктивной математики, выдвинутый А. А. Марковым [1], [2] и в общей форме утверждающий, что если конструктивный процесс, заданный нек-рым предписанием, не является неограниченно продолжаемым, то он заканчивается. В конструктивной математике получили применение несколько конкретных, содержательно эквивалентных разновидностей этого принципа. 1) Пусть W нормальный алгорифм, Рслово в его алфавите. Тогда, если опровергнуто предположение о неприменимости Y к Р, то Y применим к Р;символически

2) В арифметике формальной К. п. п. может быть выражен следующей арифметич. формулой

где T1 примитивно рекурсивный предикат такой, что частично рекурсивная функция с гёделевым номером z определена на хтогда и только тогда, когда EyT1(z, х, у )(ср. [3]). 3) Если рекурсивно перечислимое множество непусто, то оно содержит нек-рый элемент. 4) Пусть Аалгоритмически проверяемое свойство натуральных чисел. Тогда, если опровергнуто предположение о том, что не существует числа со свойством А, то найдется натуральное число со свойством А. Соответствующая логическая схема записывается в виде

Иногда термин "К. п. п." специально связывается именно с этой последней формой рассуждений, поскольку искомое число "подбирается" в ходе следующего конструктивного процесса: проверяют А(0), если это верно, то берут 0 в качестве искомого числа, в противном случае переходят к проверке А (1) и т. д.

Интуитивное оправдание К. п. п. в рамках применяемой в конструктивной математике системы абстракций состоит в том, что если невозможность неограниченного продолжения данного конструктивного процесса убедительно доказана, то потенциально достижимо окончание этого процесса в результате его последовательного выполнения шаг за шагом. Таким образом, при утверждении существования конструктивного объекта (напр., результата применения нормального алгорифма к слову) на основании К. п. п. не происходит выхода за рамки абстракции потенциальной осуществимости.

К. п. п. безусловно допустим с точки зрения классич. логики, поскольку он является частным случаем общего закона снятия двойного отрицания и закона исключенного третьего. Применение этих логических законов сводится к К. п. п. во многих конструкциях теории рекурсивных функций, что делает эти конструкции достоянием конструктивной математики. Использование К. п. п. позволяет также получить ряд значительных результатов в конструктивном анализе, в частности теорему о непрерывности алгоритмич. операторов и о продолжимости эффективных функционалов до частично рекурсивных функционалов (см. также Конструктивное метрическое пространство). Другой сферой приложений К. п. п. является конструктивная семантика [4]. Еще задолго до формулировки К. п. п. в качестве общего принципа конструктивной математики проводились исследования по обоснованию различных форм этого принципа в рамках того или иного круга допускаемых конструктивных средств. Здесь следует указать следующий основополагающий результат П. С. Новикова, полученный в 1943 (см. [5]): пусть для формулы (х)с одной переменной в конструктивной формальной арифметике выводимо для каждого пи в классической арифметике выводимо E хА (х);тогда формула выводима и в конструктивной арифметике. В работе [6] было получено обоснование К. п. п. в рамках новой системы конструктивной семантики, развиваемой в последние годы А. А. Марковым.

Являясь, по-видимому, наименее непосредственной из первоначальных установок конструктивной математики, К. п. п. принимается нек-рыми сторонниками последней с известными оговорками. К. п. п. отвергается также интуиционистской математикой как недостаточно убедительный интуитивно. С другой стороны, в связи с формализацией ряда разделов интуиционистской математики детально изучались вопросы о соотношениях соответствующих систем с формальными схемами, выражающими К. п. п. В частности, установлена независимость схем (2) и (4) от аксиом интуиционистского исчисления предикатов, арифметики и анализа (см. [2], [7], [8]).

Лит.:[1] Марков А. А., "Успехи матем. наук", 1954, т. 9, в. 3, с. 226-30; [2] его же, в кн.: Тр. 3 Всесоюзного математического съезда, т. 2, М., 1956, с. 146-47; [3] Клини С. К., Введение в метаматематику, пер. с англ., М., 1957; [4] Шанин Н. А., "Тр. матем. ин-та АН СССР", 1958, т. 52, с. 226-311; [5] Новиков П. С, "Матем. сб.", 1943, т. 12, в. 2, с. 231-61; [6] Марков А. А., "Докл. АН СССР", 1974, т. 214, № 4, с. 765-68, т. 215, № 1, с. 57-60; [7] Клини С, Весли Р., Основания интуиционистской математики с точки зрения теории рекурсивных функций, пер. с англ., М., 1978; [8] Тrое1stra A. S., в кн.: ISILC. Proof theory symposion, В., 1975, p. 370-83.

Б. А. Кушнер.

Математическая энциклопедия. — М.: Советская энциклопедия

И. М. Виноградов

1977—1985

Рейтинг статьи:
Комментарии:

Вопрос-ответ:

Что такое конструктивного подбора принцип
Значение слова конструктивного подбора принцип
Что означает конструктивного подбора принцип
Толкование слова конструктивного подбора принцип
Определение термина конструктивного подбора принцип
konstruktivnogo podbora princip это
Ссылка для сайта или блога:
Ссылка для форума (bb-код):