Поиск в словарях
Искать во всех

Математическая энциклопедия - контрагредиентный автоморфизм

Контрагредиентный автоморфизм

к автоморфизму j правого модуля Мнад кольцом Аавтоморфизм j левого A-модуля М*(*обозначает переход к сопряженному модулю), сопряженный к автоморфизму, обратному ф. Более общо, если y-изоморфизм правого A-модуля М 1 и правого A-модуля М 2, то контрагредиентным к y изоморфизмом наз. изоморфизм левого A-модуля М*1 на левый А-модуль М*2, сопряженный к изоморфизму, обратному y. Пусть и канонические билинейные формы на и Тогда определяется следующим тождеством относительно

Если Mt и М 2 обладают конечными базисами, то y -изоморфизм, контрагредиентный к

Пусть Акольцо с единицей и Мправый A-модуль, обладающий конечным базисом, jнекоторый автоморфизм модуля Ми Xматрица j в фиксированном базисе (эта матрица обратима). Тогда в сопряженном базисе матрица К. а. j имеет вид

(индекс T означает транспонирование). Матрица наз. контрагредиентной матрицей к обратимой матрице X.

Лит.:[1] Бурбаки Н., Алгебра. Алгебраические структуры. Линейная и полилинейная алгебра, пер. с франц., М., 1962.

В. Л. Попов.

Математическая энциклопедия. — М.: Советская энциклопедия

И. М. Виноградов

1977—1985

Рейтинг статьи:
Комментарии:

Вопрос-ответ:

Что такое контрагредиентный автоморфизм
Значение слова контрагредиентный автоморфизм
Что означает контрагредиентный автоморфизм
Толкование слова контрагредиентный автоморфизм
Определение термина контрагредиентный автоморфизм
kontragredientnyy avtomorfizm это
Ссылка для сайта или блога:
Ссылка для форума (bb-код):