Математическая энциклопедия - квазирегулярный радикал
Связанные словари
Квазирегулярный радикал
кольца наибольший квазирегулярный идеал данного кольца. Идеал Акольца Rназ. квазирегулярным, если Аявляется квазирегулярным кольцом. Во всяком альтернативном (в частности, ассоциативном) кольце существует К. р.; он совпадает с суммой всех правых (левых) квазирегулярных идеалов (см. [1], [10]). К. р. ассоциативного кольца наз. также Джекобсона радикалом.
К. p. J(R) произвольного альтернативного кольца Rравен пересечению всех максимальных модулярных правых (левых) идеалов кольца R; J(R)равен также пересечению ядер всех неприводимых правых (левых) представлений кольца R(см. [1], [5]-[8]). Кольцо Rназ. J-полупростым (или просто полупростым), если J(R) =0. Факторкольцо R/J(R)всегда полупросто. Всякое полупростое кольцо изоморфно подпрямой сумме примитивных колец [1], [8]. Если Rудовлетворят условию минимальности для правых (левых) идеалов, то радикал J(R)нильпотентен, а факторкольцо R/J(R)изоморфно конечной прямой сумме полных матричных колец над телами и алгебр Кэли Диксона (последние слагаемые в ассоциативном случае отсутствуют), см. [1]-[3]. Пусть Адвусторонний идеал кольца R, тогда
(см. [1], [4]); если Rассоциативно и Rnкольцо всех матриц порядка пнад R, то
Если Rассоциативная алгебра над полем Fи мощность Fбольше размерности Rнад Fлибо Rявляется алгебраической над F, то J(R)нильидеал. К. р. конечно порожденного альтернативного кольца, удовлетворяющего существенному тождественному соотношению, совпадает с нижним нильрадикалом (см. Радикалы колец и алгебр) [6]. Некоторый аналог К. р. существует Во всякой йордаповой алгебре.
Лит.:[1] Джекобсон Н., Строение колец, пер. с англ., М., 1981; [2] Жевлаков К. А., "Алгебра и логика", 1965, т. 4, № 4, с. 87-102; [3] его же, тай же, 1966, т. 5, № 3, с. 11-36; [4] его же, там же, 1969, т. 8, №2, с. 176-80; [5] его же, там же, № 3, с. 309-19; [6] его же, там же, 1972, т. 11, № 2, с. 140-61; [7] Слинько А. М., Шестаков И. П., там же, 1974, т. 13, № 5, с. 544-88; [8] Kleinfeld E., "Amer. J. Math.", 1955, v. 77, p. 725 30; [9] McCrimmon K., "Proc. Nat. Acad. Sci. USA", 1969, v. 62, p. 671-78; [10] Smiley M. P., "Ann. Math.", 1948, v. 49, № 3, p. 702-09.
И. П. Шестаков.
Математическая энциклопедия. — М.: Советская энциклопедия
И. М. Виноградов
1977—1985