Математическая энциклопедия - полинильпотентная группа
Связанные словари
Полинильпотентная группа
группа, обладающая конечным нормальным рядом, факторы к-рого нильпотентны; такой ряд наз. полинильпотентным. Длина кратчайшего полинильпотентного ряда П. г. наз. ее полинильпотентной длиной. Класс всех П. г. совпадает с классом всех разрешимых групп;однако, вообще говоря, полинильпотентная длина меньше разрешимой. П. г. длины 2 наз. метанильпотентными.
Все группы, обладающие (возрастающим) нолинильпотентным рядом длины l, факторы к-рого (в порядке возрастания ряда) имеют классы нильпотентности, не превосходящие чисел с 1, с 2,..., с l соответственно, образуют многообразие , являющееся произведением нильпотентных многообразий:
(см. Групп многообразие). Свободные группы такого многообразия наз. свободными полинильнотентными группами. Особый интерес представляют многообразия и . Первое из них содержит все связные разрешимые группы Ли; во втором все конечно порожденные группы конечно аппроксимируемы и удовлетворяют условию максимальности для нормальных подгрупп.
Лит.:[1] Курош А. Г., Теория групп, 3 изд., М., 1967; [2] Нейман X., Многообразия групп, пер. с англ., М., 1969. А. Л. Шмелъкин.
Математическая энциклопедия. — М.: Советская энциклопедия
И. М. Виноградов
1977—1985