Поиск в словарях
Искать во всех

Математическая энциклопедия - полупростой элемент

Полупростой элемент

линейной алгебраической группы G - элемен т , где V - конечномерное векторное пространство над алгебраически замкнутым полем К, являющийся полупростым эндоморфизмом пространства V. Понятие П. э. не зависит от реализации группы Gв виде линейной группы, а определяется лишь структурой ал-гебраич. группы на G. Элемент полупрост тогда и только тогда, когда для оператора правого сдвига rg в К[G]существует базис из собственных векторов. При любом рациональном линейном представлении множество П. э. группы Gотображается на множество П. э. группы j(G).

Аналогично определяются полупростые элементы алгебраической алгебры Ли , отвечающей группе G; дифференциал представления j отображает множество

П. э. алгебры на множество П. э. своего образа. Полупростой элемент алгебры Ли это элемент такой, что присоединенное линейное преобразование ad Xявляется полупростым эндоморфизмом векторного пространства . Если алгебра Ли редуктивной линейной алгебраич. группы, то Xесть П. э. алгебры тогда и только тогда, когда Xполупростой эндоморфизм пространства V.

Лит.:[1] Борель А., Линейные алгебраические группы, пер. с англ., М., 1972; [2] Мерзляков Ю. И., Рациональные группы, М., 1980; [3] Хамфри Д ж., Линейные алгебраические группы, пер. с англ., М., 1980. А. Л. Онищик.

Математическая энциклопедия. — М.: Советская энциклопедия

И. М. Виноградов

1977—1985

Рейтинг статьи:
Комментарии:

Вопрос-ответ:

Что такое полупростой элемент
Значение слова полупростой элемент
Что означает полупростой элемент
Толкование слова полупростой элемент
Определение термина полупростой элемент
poluprostoy element это
Ссылка для сайта или блога:
Ссылка для форума (bb-код):