Поиск в словарях
Искать во всех

Математическая энциклопедия - риманово пространство обобщенное

Риманово пространство обобщенное

пространство с внутренней метрикой, подчиненное нек-рым ограничениям на кривизну. К ним относятся пространства с "кривизной, ограниченной сверху", и др. (см. [3]). Р. п. о. отличаются от римановых пространств не только большей общностью, но и тем, что они определяются и исследуются, исходя из метрики, без координат. При нек-ром соединении условий на кривизну и поведении кратчайших (т. е. кривых, длины к-рых равны расстояниям между концами) Р. п. о. оказывается римановым, что дает чисто метрич. определение риманова пространства.

Определения Р. п. о. исходят из классич. связи кривизны с избытком геодезического треугольника (избыток= сумма углов минус p). Эти понятия переносятся на пространство с внутренней метрикой такое, что у каждой точки его есть окрестность, любые две точки к-рой соединены кратчайшей. Это условие далее подразумевается без оговорок. Т р е у г о л ь н и к о м Т=АВС наз. тройка кратчайших АВ, ВС, СА - сторон треугольника, соединяющих попарно три различных точки А, В, С - вершины треугольника. Угол определяется между кривыми в любом метрич. пространстве.

Пусть L, M - исходящие из одной точки Окривые в пространстве с метрикой r. Выбираются точки , , строится евклидов треугольник со сторонами х=r( О, X), у=r(O, Y), z=r(X, Y )и углом g( х, у), противолежащим стороне z. Определяется в е р х н и й у г о л между Lи М:

(1)

Верхние углы треугольника это верхние углы , между его сторонами при вершинах А, В, С, а избыток треугольника

Р. п. о. с ограниченной кривизной определяется условием:

(А)для каждой последовательности треугольников Т n, стягивающихся к точке,

(2)

где площадь евклидова треугольника с такими же сторонами, что , то Такое пространство оказывается римановым при двух естественных дополнительных условиях:

(1) л о к а л ь н а я к о м п а к т н о с т ь п р о с тр а н с т в а (в пространстве с внутренней метрикой это уже обеспечивает условие локального существования кратчайших);

(2) л о к а л ь н а я п р о д о л ж а е м о с т ь к р а тч а й ш и х у каждой точки существует окрестность Uтакая, что любую кратчайшую ХY, где , можно продолжить за ее концы. При всех этих условиях пространство является римановым (см. [4]), причем в окрестности каждой точки можно ввести координаты х i так, что метрика будет задаваться линейным элементом с коэффициентами , 0<a<1. Тем самым имеется параллельный перенос (с непрерывными ) и почти везде тензор кривизны.

Кроме того, доказано [7], что координаты х i можно взять гармоническими, т. е. удовлетворяющими равенствам . Гармонич. системы координат составляют атлас класса С 3,a при любом a, 0<a<1.

Р. п. о. с ограниченной кривизной при K = K', удовлетворяющее условиям (1) и (2), является римановым пространством постоянной римановой кривизны K(см. [3]).

Всякое риманово пространство с римановой кривизной, заключенной между Kи , является Р. п. о. кривизны и удовлетворяет условиям (1) и (2).

"Пространство с кривизной " определяется левым неравенством (2). т. е. условием:

( А - )для любой последовательности треугольников Т п, стягивающихся в точку,

(3)

Другое равносильное определение и начало исследования Р. п. о. исходят из сравнения произвольного треугольника Т=АВС с треугольником со сторонами той же длины в пространстве постоянной кривизны K. Пусть углы такого треугольника; относительный верхний избыток треугольника Топределяется как . Условие ( А -) в определении пространства с кривизной можно заменить на условие:

(A1-). у каждой точки есть окрестность , в к-рой для всякого треугольника Т. Выполняется и более сильное свойство вогнутости метрики. Именно, пусть L, М - кратчайшие, исходящие из одной точки О, и угол в треугольнике со сторонами х=r(O, X), у=r(O, X), z=r(X, Y),, в пространстве постоянной кривизны K, противолежащий стороне z. В (локально) угол оказывается неубывающей функцией при . Отсюда следуют локальные свойства:

(I) между любыми двумя кратчайшими, исходящими из одной точки, существует угол и даже "угол в сильном смысле" (так что, в частности, если

у=const, то ;

(II) для углов a, b, g треугольника в и соответствующего треугольника

(III) в , если , кратчайшие (тем самым кратчайшая в с данными концами единственна).

Двойственными пространствами с кривизной будут пространства с кривизной , определяемые аналогично через нижние избытки, к-рые вычисляются по нижним углам в сильном смысле. Для кратчайших L, М этот угол есть

Нижний избыток треугольника есть Пространство с кривизной это такое пространство, в к-ром вместо ( А - )выполняется условие:

( А + )для любой последовательности Т n треугольников, стягивающихся к точке,

(4)

Неравенство с верхним избытком , противоположное неравенству (3), не дает содержательных результатов, их не дает и неравенство с избытком, вычисляемым просто с нижними углами

Условие ( А + )можно заменить на условие:

, у каждой точки есть окрестность , в к-рой для всякого треугольника Т. В (локально) угол для двух кратчайших L, M оказывается невозрастающей функцией (выпуклая метрика).

Аналогично пространствам с кривизной для пространств с кривизной выполняются (локальные) свойства, подобные (I) и (II): между кратчайшими существует угол в сильном смысле; для всякого треугольника в . Вместо (III) выполняется условие неналегания кратчайших или, что то же, единственность их продолжения: если АС Й АВ и АС1 Й АВ в , то либо AC Й AC1, либо АС1 Й АС.

Таким образом, пространство с ограниченной кривизной получается соединением условий, определяющих оба класса пространств с кривизной, ограниченной сверху или снизу (причем в левой части неравенства (3) нет нужды брать ). Условие (А) можно заменить, подобно и , на условие:

(A1) у каждой точки есть окрестность ', где для всякого треугольника Т. Это оказывается также равносильным следующему:

(А 2) для всякой четверки точек в ' существует четверка точек с теми же попарными расстояниями в пространстве постоянной кривизны k, где и kзависит, вообще говоря, от выбранной четверки точек в '.

Примером Р. п. о. с кривизной является область риманова пространства, в к-рой римановы кривизны всех двумерных площадок во всех точках ограничены сверху (снизу) числом K(K').

Множество Vвпространстве с внутренней метрикой наз. в ы п у к л ы м, если любые две точки можно соединить кратчайшей X, Y и всякая такая кратчайшая содержится в V.

Установлен [8] следующий результат: если пространство Rс внутренней метрикой получено склеиванием двух пространств R', R" кривизны по выпуклым множествам V' М R" и V" М R", то Rсамо есть пространство кривизны . Условие склеивания заключается в том, что и в R', R" индуцируется метрика пространства R.

Две выходящие из точки Окривые L, М (по определению) имеют в О о д и н а к о в о е н а п р а в л е н и е, если верхний угол между ними равен нулю (если L=M, то говорят, что Lимеет в Оопределенное направление). Направление в точке Оопределяется как класс кривых, имеющих в Оодинаковое направление. Направления в точке Ообразуют метрич. пространство, в к-ром расстояние между направлениями определяется верхним углом между любыми их представителями. Это пространство наз. п р о с т р а нс т в о м н а п р а в л е н и й в точке О.

Доказано [5]: если точка Осодержится в окрестности пространства кривизны , гомеоморфной Е n, то пространство направлений в точке Оявляется пространством кривизны . Неизвестно (1983), гомеоморфно ли оно (п-1)-мерной сфере.

Рейтинг статьи:
Комментарии:

Вопрос-ответ:

Что такое риманово пространство обобщенное
Значение слова риманово пространство обобщенное
Что означает риманово пространство обобщенное
Толкование слова риманово пространство обобщенное
Определение термина риманово пространство обобщенное
rimanovo prostranstvo obobschennoe это
Ссылка для сайта или блога:
Ссылка для форума (bb-код):