Поиск в словарях
Искать во всех

Математическая энциклопедия - ли группа

Ли группа

группа G, обладающая такой структурой аналитического многообразия, что отображение прямого произведения в Gана-литично. Другими словами, Ли г.это множество, наделенное согласованными структурами группы и аналитич. многообразия. Ли г. наз. вещественной, комплексной или р-адической в зависимости от поля, над к-рым рассматривается ее аналитич. многообразие. В дальнейшем, как правило, рассматриваются вещественные Ли г. (всякая комплексная Ли г. естественно наделяется структурой вещественной Ли г.с помощью конструкции ограничения основного поля; о Ли г. над полями р-адических чисел см. Ли р-адическая группа. Аналитическая группа).

Примеры Ли г. Полная линейная группа над полем действительных чисел (см.

Линейная группа).и се подгруппы, замкнутые в естественной евклидовой топологии.

Основные понятия теории Ли г. введены в математику в 70-е гг. 19 в. С. Ли (S. Lie). Ли г. возникли в связи с проблемой разрешимости дифференциальных уравнений в квадратурах и исследованием непрерывных групп преобразований. Успешное применение теории групп к решению алгебраич. уравнений высших степеней, выразившееся в создании теории Галуа, повлекло за собой попытку построения аналога теории Галуа для дифференциальных уравнений. И хотя группы в теории дифференциальных уравнений заняли несколько иное место, нежели в теории алгебраич. уравнений, это привело к созданию теории Ли г., а также теории алгебраич. групп, глубоко связанных со многими областями математики. Первоначально Ли г. определялись как локальные группы преобразований, т. е. как семейства локальных аналитич. реобразований re-мерного пространства (или ), аналитически зависящих от конечной системы параметров, причем требовалось, чтобы параметры произведения преобразований выражались через параметры сомножителей посредством аналитич. функций. Позже перешли к абстрактному рассмотрению Ли г., но также с локальной точки зрения (см. Ли локальная группа). Системами, исследование глобального строения Ли г. первыми начали Э. Картан (Е. Cartan) и Г. Вейль (Н. Weyl). Первое современное изложение теории Ли г. было дано в 1938 Л. С. Понтрягиным (см. [1]).

Возникает вопрос, не приведет ли замена аналитичности многообразия G и отображения m дифференциру-емостью к расширению класса Ли г.? Этот вопрос был решен еще С. Ли: если m дважды непрерывно дифференцируемо, то G является Ли г. Значительно более сложной оказалась пятая проблема Г и л ь б е р т а: пусть Gесть и-мерное топологич. многообразие и отображение непрерывно, будет ли GЛи г.? Для компактных групп эта проблема была решена положительно Дж. Нейманом (J. Neumann) в 1933, а для локально компактных абелевых групп Л. С. Понтрягиным в 1934. В общем случае положительное решение было получено в 1952 А. М. Г лис оном (А. М. Gleason), Д. Монтгомери и Л. Зиппином (см.[13], а также [18]). Таким образом, можно определить Ли г. как топологич. группу, топологич. пространство к-рой является конечномерным (или локально евклидовым) многообразием, что весьма важно для общей теории топологич. групп.

Подмножество НЛи г. Gназ. подгруппой (точнее, подгруппой Ли), если H является подгруппой абстрактной группы Gи подмногообразием аналитич. многообразия G. М о р ф и з м Л и г. G1 Ли г. G2это аналитич. отображение являющееся гомоморфизмом абстрактных групп; если к тому же f биективно, а f-1 аналитично, то f наз. и з о м о р ф и з м о м Ли г.; в случае локальной биективности f, говорят, что Ли г. G1 и G2 локально и з о м о р ф н ы. Пусть H замкнутая нормальная подгруппа Ли г. G. Тогда факторгруппа G/H наделяется такой структурой аналитич. многообразия, что G/H превращается в Ли г., а канонич. отображение является морфизмом. Размерностью Ли г. G наз. размерность G как аналитич. многообразия. В дальнейшем рассматриваются только конечномерные Ли г., хотя многие результаты обобщаются на случай Ли банаховых групп.

Соответствие между группами и алгебрами Ли. Основным методом исследования в теории Ли г. является инфинитезимальный метод, созданный С. Ли. Этот метод позволяет в значительной мере редуцировать изучение такого сложного объекта, как Ли г., к изучению чисто алгебраич. объекта Ли алгебры. Каждой Ли г. G сопоставляется алгебра Ли L(G), к-рая строится следующим образом (см. также Ли алгебра аналитической группы). Левоинвариантным векторным полем на G наз. векторное поле, инвариантное относительно дифференциалов левых сдвигов, т. е. X - левоинвариантное векторное поле, если для любых g,. где Lg(h)=gh. Левоинвариантные векторные поля на G образуют векторное пространство, к-рое можно отождествлять с касательным пространством Т е(G).в единице егруппы G, сопоставляя полю Xего значение в е. Если X, то скобка Ли также будет левоинвариантным полем и это задает в Te(G).билинейную операцию, относительно к-рой Te(G).становится алгеброй Ли L(G) (здесь о означает композицию векторных полей, рассматриваемых как дифференцирования алгебры бесконечно дифференцируемых дей-ствительно-значных функций на многообразии G). Можно дать более явную конструкцию операции коммутирования [X, Y]в L(G). Пусть x(t), y(t).-интегральные кривые полей X, Y в G, проходящие через единицу группы. Тогда [X, Y]будет касательным вектором в точке ек кривой

Восстановить группу Ли G по ее алгебре Ли L(G).позволяет экспоненциальное отображение сопоставляющее полю элемент х(1) его интегральной кривой x(t). Если G линейная Ли г., т. е. подгруппа полной линейной группы то L(G) отождествляется с подалгеброй полной матричной алгебры Ли и экспоненциальное отображение принимает вид

Отображение ехр : аналитично и локально изоморфно, и поэтому определяет в окрестности единицы группы G локальную карту (каноническне координаты). Согласно Кэмпбелла Хаусдорфа формуле запись умножения в G в канонич. координатах, т. е. отображение

выражается через операции в алгебре Ли L(G). Таким образом, локально Ли г. полностью определяется своей алгеброй Ли.

Соответствие между группами и алгебрами Ли обладает глубокими функториальными свойствами. Ли г. определяется своей алгеброй Ли с точностью до локального изоморфизма; в частности, если Ли г. G1 и G2 связны и односвязны, то из изоморфизма их алгебр Ли следует изоморфизм Связные подгруппы Ли г. G взаимно однозначно соответствуют подалгебрам алгебры Ли L(G). Пусть морфизм двух Ли г. Тогда дифференциал морфизма в единице оказывается гомоморфизмом алгебр Ли:

Вообще говоря, не всякий гомоморфизм имеет вид dfe, однако в случае односвязной группы Gl это так. Связная подгруппа Нсвязной Ли г. G тогда и только тогда нормальна, когда L(H).является идеалом в алгебре Ли L(G); если к тому же Н замкнута в G, то

По построению алгебра Ли L(G).данной Ли г. G является аналитически инвариантной. В действительности же L(G).топологически инвариантна, что непосредственно вытекает из следующей теоремы Картана: непрерывное гомоморфное отображение (вещественной) Ли г. Gв Ли г. H является морфизмом. Для комплексных Ли г. последнее утверждение не всегда верно, хотя оно сохраняет силу для р-адических Ли г. (см. [3]). Группа автоморфизмов Aut(G) связной Ли г. Gявляется Ли г., к-рая отождествляется с подгруппой группы Aut(L(G)). В частности, если Ли г. Gодносвязна, то

где D(L(G))обозначает алгебру Ли дифференцирований алгебры L(G). Соответствие

где Int(g) внутренний автоморфизм, порожденный элементом наз. присоединенным представлением Ли г. G; его дифференциал будет присоединенным представлением алгебры Ли L(G).

Глобальное строение групп Ли. Важным результатом здесь является теорема существования глобальной Ли г. с заданной вещественной алгеброй Ли, доказанная в 1930 Э. Картаном. Он показал также, что замкнутая подгруппа вещественной Ли г. является подгруппой Ли. К этому времени выявилась особая роль двух типов Ли г.: полупростых и разрешимых (см. Ли полупростая группа, Ли разрешимая группа). Связная Ли г. G наз. полупростой, если она не содержит неединичных связных разрешимых нормальных подгрупп; если к тому же G не содержит и других нетривиальных связных нормальных подгрупп, то она наз. простой. Алгебра Ли L(G).полупростой, простой или разрешимой Ли г. G является соответственно полупростой, простой или разрешимой алгеброй Ли. Исследование произвольных Ли г. в существенной степени сводится к изучению полупростых и разрешимых. Всякая Ли г. G обладает наибольшей связной разрешимой нормальной подгруппой, к-рая наз. разрешимым радикалом и обозначается R(G). В группе G существуют максимальные полупростые подгруппы. Если S - одна из них. то причем все максимальные полупростьте подгруппы сопряжены; если G односвязна, то и произведение будет полупрямым (теорема Леви Мальцева). Существование этого разложения доказано впервые Э. Леви (Е. Levi) в 1905 для комплексных алгебр Ли, сопряженность полупростых компонент установлена А. И. Мальцевым в 1942 (см. [16], а также Леви Мальцева разложение).

Наиболее общий факт о разрешимых Ли г. получен еще С. Ли: всякая связная разрешимая линейная группа над иолом приводится к треугольному виду, т. е. описание связных разрешимых Ли г. сводится к описанию подгрупп полной треугольной группы Детальное исследование разрешимых Ли г. провел А. И. Мальцев в [16].

При изучении строения полупростых Ли г. важную роль играют их максимальные компактные подгруппы, изученные Э. Картаном в тесной связи с теорией симметрич. пространств (см. [10]). Согласно классич. теореме Картана максимальные компактные подгруппы полупростой Ли г. G сопряжены; если В - максимальная компактная подгруппа в G, то существует такое подмногообразие аналитически изоморфное евклидову пространству, что G=BE, причем отображение является изоморфизмом аналитич. многообразий. Таким образом, топологич. строение группы G определяется топологич. строением группы В. А. И. Мальцев [16] распространил теорему Картана на произвольные связные Ли г. Другое разложение связной Ли г. в произведение максимальной компактной подгруппы и евклидова пространства было найдено К. Ивасевой (см. Ивасаеы разложение).

Рейтинг статьи:
Комментарии:

Вопрос-ответ:

Что такое ли группа
Значение слова ли группа
Что означает ли группа
Толкование слова ли группа
Определение термина ли группа
li gruppa это
Ссылка для сайта или блога:
Ссылка для форума (bb-код):