Поиск в словарях
Искать во всех

Математическая энциклопедия - параметра вариации метод

Параметра вариации метод

метод приближенного решения нелинейных (и линейных) функциональных и операторных уравнений в банаховых пространствах , а также для качественных исследований. П. в. м. состоит в том, что уравнение Р(х)=0, где оператор Р(х).непрерывно дифференцируем по Фреше до нужного порядка, или нек-рый нелинейный функционал Ф(х), связанный с решением лтого уравнения, обобщаются путем введения вспомогательного числового (или общего функционального) параметра l, принимающего значения на конечном или бесконечном промежутке , так: , где ,оператор со значениями в Y, так что Р(х)=0 получается при , а уравнение легко разрешается или известно его решение x0. При этом предполагается, что оператор непрерывно дифференцируем (в смысле Фрете) по хи l, т. е. существуют непрерывные частные производные и , и что существует непрерывный оператор из Yв X. Для построения решения уравнения на всем интервале l0ll* строится соответствующая дифференциальная задача (задача Коши) в предположении, что непрерывно дифференцируемая функция со значениями в X, определяемая этим уравнением:

или

Интервал разбивается точками <.на более мелкие подинтервалы длины , k=1,2,..., п, и к задаче Коши (2) (или (1)) применяются методы численного интегрирования обыкновенных дифференциальных уравнений с шагом (или несколько таких методов). В результате для построения решения х(l) уравнения F(x, А,)=0 получаются П. в. м. соответствующих типов. Построенное значение х(l*).будет решением уравнения Р(x)=0.

Решение на каждом шаге линейных относительно задач вида (1) или обращение линейных операторов в (2), или последовательная аппроксимация обратного оператора проводятся различными методами или опять-таки П. в. м.

Шаги выбираются различными способами, напр. из условия минимума нормы невязки как функции многих, вообще говоря, переменных. При этом эффективным является также совместный выбор и свободных параметров метода численного интегрирования, напр. Рунге Кутта методаs-ro порядка точности, использование корней полиномов Чебыптева и близких к ним и др.

Задача Коши (2) служит не только средством для определения приближенного решения рассматриваемого уравнения, но и для доказательства существования самого решения. Изучен ряд различных способов введения параметра l. В качестве числового параметра l, может быть использован также и один из естественных параметров, содержащихся в рассматриваемой задаче.

В зависимости от способа введения параметра lП. в. м. является прямым или итерационным методом. Совместное применение прямого и итерационного методов наз. комбинированным П. в. м. Напр., итерационный метод типа усовершенствованного метода

Эйлера Коши с шагом (при F(x,l)=P(x).(1-l)Р( х 0),l=0 и l*=1).является методом 3-го порядка точности и имеет следующий вид:

Каждый метод численного интегрирования порождает свой итерационный П. в. м. высокого порядка точности, причем без привлечения производных Р(х).порядка выше первой.

Использование методов численного интегрирования в прямом П. в. м. совместно с корректировкой результатов после каждого шага с помощью итерационного П. в. м. (комбинированный П. в. м.) представляет собой один из наиболее эффективных методов решения нелинейных задач.

Рейтинг статьи:
Комментарии:

Вопрос-ответ:

Что такое параметра вариации метод
Значение слова параметра вариации метод
Что означает параметра вариации метод
Толкование слова параметра вариации метод
Определение термина параметра вариации метод
parametra variacii metod это
Ссылка для сайта или блога:
Ссылка для форума (bb-код):