Математическая энциклопедия - аффинная дифференциальная геометрия
Связанные словари
Аффинная дифференциальная геометрия
раздел геометрии, изучающий дифференциально-геометрич. свойства кривых и поверхностей, сохраняющиеся при преобразованиях аффинной группы или ее подгрупп. Наиболее полно изучена дифференциальная геометрия эквиаффинного пространства.
В эквиаффинной плоскости каждые два вектора имеют инвариант площадь параллелограмма, построенного на векторах С помощью этого понятия для кривой , отличной от прямой, строится инвариантный параметр
наз. экв и аффинной дугой.
Дифференциальный инвариант
наз. экв и аффинной кривизной плоской кривой. Постоянство эквпаффинной кривизны характеризует кривые 2-го порядка. Натуральное уравнение определяет кривую с точностью до эквиаффинного преобразования. Вектор направлен по аффинной нормали к плоской кривой; аффинная нормаль в точке касается геометрич. места середин хорд кривой, параллельных касательной в точке Ми совпадает с диаметром параболы, имеющей в точке Мсоприкосновение 3-го порядка с кривой.
При переходе к общей аффинной группе у кривой рассматривают два более сложных инварианта: аффинную дугу а и аффинную кривизну . Они могут быть выражены через введенные выше инварианты и :
(в эквиаффинной геометрии сами величины и для краткости наз. аффинной дугой и аффинной кривизной). Подобным же образом строятся центроаффинная дуга, пентроаффинная кривизна, эквицентроаффинная дуга и эквицентроаффинная кривизна плоской кривой.
В эквиаффинном пространстве каждым трем векторам может быть отнесен инвариант объем ориентированного параллелепипеда, определяемого этими векторами. Натуральный параметр (эквиаффинная дуга) кривой определяется формулой
Дифференциальные инварианты где штрихи означают дифференцирование по натуральному параметру, наз. соответственно эквиаффинной кривизной и э к в и-аффинным кручением пространственной кривой. Изучение кривой сводится к выбору того или иного сожровождающего репера; особую роль играет репер, образвванный векторами
и определяемый дифференциальной окрестностью 4-го порядка рассматриваемой кривой. Разработана также центроаффинная теория пространственных кривых (см. [5]).
Для пвверхности в эквиаффинном пространстве, отличной от развертывающейся поверхности, строится тензор
где символ ковариантной производной в связности с метрич. тензором , задает направление аффинной нормали к поверхности. Аффинная нормаль проходит через центр соприкасающейся квадрики Ли. Деривационные уравнения
определяют внутреннюю связность 1-го рода поверхности. Наряду с ней возникает внутренняя связность 2-го рода , определяемая деривационными уравнениями
где v ковариантный вектор, определяющий касательную плоскость к поверхности и подчиненный условию
нормировки . Связности и являются сопряженными относительно тензора в смысле А. П. Нордена (см. [3]). Тензор
играющий также основную роль в проективной дифференциальной геометрии, позволяет построить симметрич. ковариантный тензор
Строятся также две основные формы поверхности: квадратичная форма
и кубическая форма ФубиниПика
Эти формы связаны условием аполярности
Две такие формы, удовлетворяющие дополнительным дифференциальным условиям, определяют поверхность с точностью до эквиаффинных преобразований. Все эти положения обобщаются на многомерный случай.
В аффинном и эквиаффинном пространствах выделяется много специфич. классов поверхностей: аффинные сферы (у к-рых аффинные нормали образуют связку), аффинные поверхности вращения (аффинные нормали пересекают одну собственную или несобственную прямую), аффинные минимальные поверхности и др.
Помимо кривых и поверхностей, изучаются также иные геометрич. образы эквиаффинного пространства, напр, конгруэнции и комплексы прямых, векторные поля и др.
Наряду с эквиаффинной дифференциальной геометрией разрабатывается дифференциальная геометрия общей аффинной группы и других ее подгрупп как в трехмерном, так и в многомерном пространствах (центроаффин-ном, эквицентроаффинном, аффинно-симплектическом, биаффинном и т. д.).
Лит.:[1] Blaschke W., Affine Differentialgeometrie, В., 1923; [2] Salkowski E., Affine Differentialgeometrie. B.-Lpz., 1934; [3] Hорден А. П., Пространства аффинной связности, М.-Л., 1950; [4] Итоги науки. Геометрия. 1963, М., 1965, с. 3-64; [5] Широков П. А., Широков А. П., Аффинная дифференциальная геометрия, М., 1959.
А. П. Широков.
Математическая энциклопедия. — М.: Советская энциклопедия
И. М. Виноградов
1977—1985