Математическая энциклопедия - нормальная кривизна
Связанные словари
Нормальная кривизна
регулярной поверхности величина, характеризующая отклонение поверхности в направлении от своей касательной плоскости в точке Р, совпадающая по абсолютной величине с кривизной соответствующего нормального сечения. Н. к. в направлении равна
где kкривизна нормального сечения в направлении единичный вектор главной нормали нормального сечения, единичный вектор нормали поверхности. Н. к. поверхности в данном направлении совпадает с Н. к. соприкасающегося параболоида в том же направлении. Н. к. поверхности, параметризованной параметрами и, v, может быть выражена через значения первой и второй квадратичных форм поверхности, вычисленных для значений , соответствующих направлению по формуле
Кривизна регулярной кривой, лежащей на поверхности, связана с Н. к. поверхности в направлении , касательном к кривой, и с геодезич. кривизной этой кривой соотношением
(см. также Мёнъе теорема. С помощью Н. к. конструируется Дюпена индикатриса, гауссова и средняя кривизны поверхности и многие другие понятия локальной геометрии поверхности.
Д. Д. Соколов.
Математическая энциклопедия. — М.: Советская энциклопедия
И. М. Виноградов
1977—1985