Поиск в словарях
Искать во всех

Математическая энциклопедия - полная линейная группа

Полная линейная группа

группа всех обратимых матриц степени пнад ассоциативным кольцом K с единицей; общепринятое обозначение: GLn(K).или GL(n, К). П. л. г. GL(n, K) может быть также определена как группа автоморфизмов АutK(V) свободного правого K-модуля Vс побразующими.

В исследовании группы GL (n, К).большой интерес представляет вопрос о ее нормальном строении. Центр Zn группы GL(n, К).состоит из скалярных матриц с элементами из центра кольца К. В классич. случае, когда К - поле, решающую роль играет исследование нормального строения специальной линейной группы SL(n, K), состоящей из матриц с определителем 1. А именно, коммутант группы GL(n, К).совпадает с SL(n, К).(кроме случая n=2, | К| -2), и всякая нормальная подгруппа группы GL,(n, К).либо содержится в Zn, либо содержит SL(n, К). В частности, специальная проективная группа

является простой (за исключением случаев п=2,|K|=2,3).

Если К - тело и n>1, то всякая нормальная подгруппа группы GL(n, К).либо содержится в Z п, либо содержит коммутант SL+(n, K) группы GL(n, K), причем коммутант SL+(n, К).порождается трансвекциями и факторгруппа проста. Кроме того, существует естественный изоморфизм

где К*- мультипликативная группа тела К. Если Кконечномерно над своим центром k, то роль группы SL(n, K) играет группа всех матриц из GL(n, К).с приведенной нормой 1. Группы SL(n, K) и SL+(n, К).не всегда совпадают, но если k - глобальное поле, то это так (см. Кнезера Титса гипотеза).

Исследование нормального строения П. л. г. над произвольным кольцом Ксвязано с развитием алгебраической К-теории. Над кольцами Кобщего типа группа GL(n, К).может быть весьма насыщена нормальными подгруппами. Напр., если К - коммутативное кольцо без делителей нуля и с конечным числом образующих, то группа GL(n, К).финитно аппроксимируема, т. е. для каждого ее элемента gсуществует нормальная подгруппа Ng конечного индекса, не содержащая g. В случае К=. задача описания нормальных подгрупп группы GL ( п,) фактически эквивалентна конгруэнц-проблеме для группы SL(n, ), поскольку а всякая нескалярная нормальная подгруппа группы SL(n, ) при n>2 является конгруэнц-подгруппой.

Имеется глубокая аналогия между строением П. л. г. и строением других классич. групп, к-рая простирается далее на простые алгебраические группы и группы Ли.

Лит.:[1] Артин Э., Геометрическая алгебра, пер. с англ., М., 1969; 12] Дьедонне Ж., Геометрия классических групп, пер. с франц., М., 1974; [3] БассX., Алгебраическая К-теория, пер. с англ., М., 1973. В. П. Платонов.

Математическая энциклопедия. — М.: Советская энциклопедия

И. М. Виноградов

1977—1985

Рейтинг статьи:
Комментарии:

Вопрос-ответ:

Что такое полная линейная группа
Значение слова полная линейная группа
Что означает полная линейная группа
Толкование слова полная линейная группа
Определение термина полная линейная группа
polnaya lineynaya gruppa это
Ссылка для сайта или блога:
Ссылка для форума (bb-код):