Математическая энциклопедия - спектральные гомологии
Связанные словари
Спектральные гомологии
обратный предел
групп гомологии с коэффициентами в абелевой группе Gнервов открытых покрытий топологии, пространства X(они наз. также гомологиями Чеха, или Александрова Чеха). Для замкнутого множества группы могут быть определены аналогичным образом с помощью подсистем всех тех множеств из к-рые имеют непустое пересечение с А. Обратный предел групп пар G) наз. группой С. г. пары (X, А). Поскольку функтор обратного предела не сохраняет точность, гомологич. последовательность пары (X, А )вобщем случае не точна. Она полуточна в том смысле, что композиция любых двух отображений равна нулю. Для компактных Xпоследовательность оказывается точной в случае, когда G компактная группа или иоле (в более общей ситуации когда группа Gалгебраически компактна). С. г. непрерывны в том смысле, что
Отсутствие точности не единственный недостаток С. г. Группы оказываются неаддитивными в том смысле, что гомологии дискретного объединения могут отличаться от прямой суммы G). От этого недостатка свободны спектральные гомологии с компактными носителями, определяемые как прямой предел взятый по всем компактным подмножествам Естественность функтора подтверждается также тем, что любые обычные гомологии (симплициальные, клеточные, сингулярные) это гомологии с компактными носителями.
Несовпадение функторов и один из примеров того, как гомологии реагируют на логич. нюансы в их исходном определении (наоборот, когомологии проявляют в этом отношении значительную устойчивость). Среди логически возможных вариантов определения гомологии в общих категориях топологич. пространств правильный был отобран не сразу, в связи с чем ассоциированная с когомологиямв Александрова Чеха теория гомологии стала распространяться лишь в 60-е гг. (хотя первые определения были даны в 40-50-х гг.). Теория удовлетворяет всем Стинрода Эйленберга аксиомам (и является теорией с компактными носителями). Для компактных Xимеет место точная последовательность
производный функтор обратного предела). В общем случае имеется эпиморфизм к-рый имеет нулевое ядро для любой алгебраически компактной группы G. Для любого гомологически локально связного (по отношению к локально компактного пространства функторы и изоморфны.
Лит.:[1] Стинрод Н., Эйленберг С., Основания алгебраической топологии, пер. с англ., М., 1958; [2] Скляренко Е. Г., лУспехи матем. наук
Математическая энциклопедия. — М.: Советская энциклопедия
И. М. Виноградов
1977—1985